Update README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ metrics:
|
|
22 |
- precision
|
23 |
- recall
|
24 |
model-index:
|
25 |
-
- name:
|
26 |
results:
|
27 |
- task:
|
28 |
type: text-classification
|
@@ -52,6 +52,21 @@ license: mit
|
|
52 |
|
53 |
This is a fine-tuned version of [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier), specialized for **Indonesian financial news sentiment classification** since i cant find any financial sentiment models for indonesian market, i decided to make my self.
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
---
|
56 |
|
57 |
## π§ Model Objective
|
@@ -151,27 +166,36 @@ TrainingArguments(
|
|
151 |
* Early stopping (`patience=2`)
|
152 |
* Training completed at **epoch 5**, best model from **epoch 3**
|
153 |
|
154 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
```
|
157 |
|
158 |
-
|
159 |
-
eval_accuracy = 0.9749255130394028
|
160 |
-
eval_precision = 0.9749490510899772
|
161 |
-
eval_recall = 0.9749255130394028
|
162 |
-
eval_f1 = 0.9749326327197978
|
163 |
-
eval_runtime = 71.9098
|
164 |
-
eval_samples_per_second = 415.395
|
165 |
-
eval_steps_per_second = 1.627
|
166 |
-
epoch = 5.0
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
```
|
169 |
|
170 |
---
|
171 |
|
172 |
## π Usage
|
173 |
|
174 |
-
|
175 |
```python
|
176 |
from transformers import pipeline
|
177 |
|
@@ -185,7 +209,7 @@ nlp = pipeline(
|
|
185 |
|
186 |
nlp("IHSG diprediksi melemah karena sentimen global negatif")
|
187 |
```
|
188 |
-
|
189 |
```python
|
190 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
191 |
import torch
|
@@ -234,8 +258,8 @@ this indonesian RoBERTa base financial CLassifier was trained and evaluated by K
|
|
234 |
## π¬ Contact
|
235 |
|
236 |
Created with love and tears by ihsan:\
|
237 |
-
[][`ihsan31415`](https://huggingface.co/ihsan31415)\
|
238 |
-
[][`ihsan31415`](https://github.com/ihsan31415)\
|
239 |
-
[][`Khoirul Ihsan`](https://www.linkedin.com/in/khoirul-ihsan-387115288/)
|
240 |
|
241 |
For collaborations or questions, feel free to reach out via Hugging Face or GitHub.
|
|
|
22 |
- precision
|
23 |
- recall
|
24 |
model-index:
|
25 |
+
- name: indo-roBERTa-financial-sentiment
|
26 |
results:
|
27 |
- task:
|
28 |
type: text-classification
|
|
|
52 |
|
53 |
This is a fine-tuned version of [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier), specialized for **Indonesian financial news sentiment classification** since i cant find any financial sentiment models for indonesian market, i decided to make my self.
|
54 |
|
55 |
+
### π§ Model Summary
|
56 |
+
|
57 |
+
| Field | Value |
|
58 |
+
|------------------|-----------------------------------------------------------------------|
|
59 |
+
| **Model Name** | `ihsan31415/indo-roBERTa-financial-sentiment` |
|
60 |
+
| **Base Model** | [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) |
|
61 |
+
| **Language** | Indonesian (`id`) |
|
62 |
+
| **Task** | Sentiment Analysis (Financial) |
|
63 |
+
| **Labels** | `0`: Positive, `1`: Neutral, `2`: Negative *(β οΈ flipped label order)* |
|
64 |
+
| **Dataset** | [`intanm/indonesian-financial-sentiment-analysis`](https://huggingface.co/datasets/intanm/indonesian-financial-sentiment-analysis) + synthetic and augmented samples |
|
65 |
+
| **Fine-tuned by** | [`ihsan31415`](https://huggingface.co/ihsan31415) |
|
66 |
+
| **Training Epochs** | 5 (Early stopping at epoch 5, best at epoch 3) |
|
67 |
+
| **Eval Accuracy** | `97.49%` |
|
68 |
+
|
69 |
+
|
70 |
---
|
71 |
|
72 |
## π§ Model Objective
|
|
|
166 |
* Early stopping (`patience=2`)
|
167 |
* Training completed at **epoch 5**, best model from **epoch 3**
|
168 |
|
169 |
+
### π Training Progress
|
170 |
+
|
171 |
+
| Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
172 |
+
|-------|----------------|------------------|------------|------------|------------|------------|
|
173 |
+
| 1 | 0.104500 | 0.085562 | 0.969402 | 0.969715 | 0.969402 | 0.969356 |
|
174 |
+
| 2 | 0.029100 | 0.088392 | 0.974859 | 0.974914 | 0.974859 | 0.974860 |
|
175 |
+
| 3 | 0.012700 | 0.102305 | 0.974926 | 0.974949 | 0.974926 | 0.974933 |
|
176 |
+
| 4 | 0.008900 | 0.125707 | 0.972816 | 0.972959 | 0.972816 | 0.972846 |
|
177 |
+
| 5 | 0.004400 | 0.157659 | 0.966690 | 0.966902 | 0.966690 | 0.966676 |
|
178 |
|
|
|
179 |
|
180 |
+
### β
Evaluation Results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
```bash
|
183 |
+
eval_loss = 0.10230540484189987
|
184 |
+
eval_accuracy = 0.9749255130394028
|
185 |
+
eval_precision = 0.9749490510899772
|
186 |
+
eval_recall = 0.9749255130394028
|
187 |
+
eval_f1 = 0.9749326327197978
|
188 |
+
eval_runtime = 71.9098
|
189 |
+
eval_samples_per_second = 415.395
|
190 |
+
eval_steps_per_second = 1.627
|
191 |
+
epoch = 5.0
|
192 |
```
|
193 |
|
194 |
---
|
195 |
|
196 |
## π Usage
|
197 |
|
198 |
+
#### Using Pipeline
|
199 |
```python
|
200 |
from transformers import pipeline
|
201 |
|
|
|
209 |
|
210 |
nlp("IHSG diprediksi melemah karena sentimen global negatif")
|
211 |
```
|
212 |
+
#### RAW
|
213 |
```python
|
214 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
215 |
import torch
|
|
|
258 |
## π¬ Contact
|
259 |
|
260 |
Created with love and tears by ihsan:\
|
261 |
+
[] [`ihsan31415`](https://huggingface.co/ihsan31415)\
|
262 |
+
[] [`ihsan31415`](https://github.com/ihsan31415)\
|
263 |
+
[] [`Khoirul Ihsan`](https://www.linkedin.com/in/khoirul-ihsan-387115288/)
|
264 |
|
265 |
For collaborations or questions, feel free to reach out via Hugging Face or GitHub.
|