ihsan31415 commited on
Commit
b193a65
Β·
verified Β·
1 Parent(s): 4e9ebfd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -17
README.md CHANGED
@@ -22,7 +22,7 @@ metrics:
22
  - precision
23
  - recall
24
  model-index:
25
- - name: finetuned-indo-roBERTa-financial-sentiment
26
  results:
27
  - task:
28
  type: text-classification
@@ -52,6 +52,21 @@ license: mit
52
 
53
  This is a fine-tuned version of [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier), specialized for **Indonesian financial news sentiment classification** since i cant find any financial sentiment models for indonesian market, i decided to make my self.
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  ---
56
 
57
  ## 🧠 Model Objective
@@ -151,27 +166,36 @@ TrainingArguments(
151
  * Early stopping (`patience=2`)
152
  * Training completed at **epoch 5**, best model from **epoch 3**
153
 
154
- ### βœ… Evaluation Results
 
 
 
 
 
 
 
 
155
 
156
- ```
157
 
158
- eval_loss = 0.10230540484189987
159
- eval_accuracy = 0.9749255130394028
160
- eval_precision = 0.9749490510899772
161
- eval_recall = 0.9749255130394028
162
- eval_f1 = 0.9749326327197978
163
- eval_runtime = 71.9098
164
- eval_samples_per_second = 415.395
165
- eval_steps_per_second = 1.627
166
- epoch = 5.0
167
 
 
 
 
 
 
 
 
 
 
 
168
  ```
169
 
170
  ---
171
 
172
  ## πŸ”Ž Usage
173
 
174
- # Using Pipeline
175
  ```python
176
  from transformers import pipeline
177
 
@@ -185,7 +209,7 @@ nlp = pipeline(
185
 
186
  nlp("IHSG diprediksi melemah karena sentimen global negatif")
187
  ```
188
- # RAW
189
  ```python
190
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
191
  import torch
@@ -234,8 +258,8 @@ this indonesian RoBERTa base financial CLassifier was trained and evaluated by K
234
  ## πŸ“¬ Contact
235
 
236
  Created with love and tears by ihsan:\
237
- [![HuggingFace](https://img.shields.io/badge/HuggingFace-orange?style=flat&logo=huggingface&logoColor=white)][`ihsan31415`](https://huggingface.co/ihsan31415)\
238
- [![GitHub](https://img.shields.io/badge/GitHub-black?style=flat&logo=github&logoColor=white)][`ihsan31415`](https://github.com/ihsan31415)\
239
- [![LinkedIn](https://img.shields.io/badge/LinkedIn-blue?style=flat&logo=linkedin&logoColor=white)][`Khoirul Ihsan`](https://www.linkedin.com/in/khoirul-ihsan-387115288/)\
240
 
241
  For collaborations or questions, feel free to reach out via Hugging Face or GitHub.
 
22
  - precision
23
  - recall
24
  model-index:
25
+ - name: indo-roBERTa-financial-sentiment
26
  results:
27
  - task:
28
  type: text-classification
 
52
 
53
  This is a fine-tuned version of [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier), specialized for **Indonesian financial news sentiment classification** since i cant find any financial sentiment models for indonesian market, i decided to make my self.
54
 
55
+ ### 🧠 Model Summary
56
+
57
+ | Field | Value |
58
+ |------------------|-----------------------------------------------------------------------|
59
+ | **Model Name** | `ihsan31415/indo-roBERTa-financial-sentiment` |
60
+ | **Base Model** | [`w11wo/indonesian-roberta-base-sentiment-classifier`](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) |
61
+ | **Language** | Indonesian (`id`) |
62
+ | **Task** | Sentiment Analysis (Financial) |
63
+ | **Labels** | `0`: Positive, `1`: Neutral, `2`: Negative *(⚠️ flipped label order)* |
64
+ | **Dataset** | [`intanm/indonesian-financial-sentiment-analysis`](https://huggingface.co/datasets/intanm/indonesian-financial-sentiment-analysis) + synthetic and augmented samples |
65
+ | **Fine-tuned by** | [`ihsan31415`](https://huggingface.co/ihsan31415) |
66
+ | **Training Epochs** | 5 (Early stopping at epoch 5, best at epoch 3) |
67
+ | **Eval Accuracy** | `97.49%` |
68
+
69
+
70
  ---
71
 
72
  ## 🧠 Model Objective
 
166
  * Early stopping (`patience=2`)
167
  * Training completed at **epoch 5**, best model from **epoch 3**
168
 
169
+ ### πŸ“Š Training Progress
170
+
171
+ | Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
172
+ |-------|----------------|------------------|------------|------------|------------|------------|
173
+ | 1 | 0.104500 | 0.085562 | 0.969402 | 0.969715 | 0.969402 | 0.969356 |
174
+ | 2 | 0.029100 | 0.088392 | 0.974859 | 0.974914 | 0.974859 | 0.974860 |
175
+ | 3 | 0.012700 | 0.102305 | 0.974926 | 0.974949 | 0.974926 | 0.974933 |
176
+ | 4 | 0.008900 | 0.125707 | 0.972816 | 0.972959 | 0.972816 | 0.972846 |
177
+ | 5 | 0.004400 | 0.157659 | 0.966690 | 0.966902 | 0.966690 | 0.966676 |
178
 
 
179
 
180
+ ### βœ… Evaluation Results
 
 
 
 
 
 
 
 
181
 
182
+ ```bash
183
+ eval_loss = 0.10230540484189987
184
+ eval_accuracy = 0.9749255130394028
185
+ eval_precision = 0.9749490510899772
186
+ eval_recall = 0.9749255130394028
187
+ eval_f1 = 0.9749326327197978
188
+ eval_runtime = 71.9098
189
+ eval_samples_per_second = 415.395
190
+ eval_steps_per_second = 1.627
191
+ epoch = 5.0
192
  ```
193
 
194
  ---
195
 
196
  ## πŸ”Ž Usage
197
 
198
+ #### Using Pipeline
199
  ```python
200
  from transformers import pipeline
201
 
 
209
 
210
  nlp("IHSG diprediksi melemah karena sentimen global negatif")
211
  ```
212
+ #### RAW
213
  ```python
214
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
215
  import torch
 
258
  ## πŸ“¬ Contact
259
 
260
  Created with love and tears by ihsan:\
261
+ [![HuggingFace](https://img.shields.io/badge/HuggingFace-orange?style=flat&logo=huggingface&logoColor=white)] [`ihsan31415`](https://huggingface.co/ihsan31415)\
262
+ [![GitHub](https://img.shields.io/badge/GitHub-black?style=flat&logo=github&logoColor=white)] [`ihsan31415`](https://github.com/ihsan31415)\
263
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-blue?style=flat&logo=linkedin&logoColor=white)] [`Khoirul Ihsan`](https://www.linkedin.com/in/khoirul-ihsan-387115288/)
264
 
265
  For collaborations or questions, feel free to reach out via Hugging Face or GitHub.