# ifable/gemma-2-Ifable-9B It achieves the following results on the evaluation set: - Loss: 1.0163 - Rewards/chosen: -21.6822 - Rewards/rejected: -47.8754 - Rewards/accuracies: 0.9167 - Rewards/margins: 26.1931 - Logps/rejected: -4.7875 - Logps/chosen: -2.1682 - Logits/rejected: -17.0475 - Logits/chosen: -12.0041 - Sft Loss: 0.0184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.4444 | 0.9807 | 35 | 1.0163 | -21.6822 | -47.8754 | 0.9167 | 26.1931 | -4.7875 | -2.1682 | -17.0475 | -12.0041 | 0.0184 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.20.0 - Tokenizers 0.19.1