--- library_name: transformers license: apache-2.0 base_model: cis-lmu/glot500-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: glot500_Inj_fr_gsd results: [] --- # glot500_Inj_fr_gsd This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1195 - Precision: 0.9635 - Recall: 0.9626 - F1: 0.9630 - Accuracy: 0.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9563 | 1.0 | 904 | 0.1448 | 0.9590 | 0.9562 | 0.9576 | 0.9630 | | 0.1622 | 2.0 | 1808 | 0.1195 | 0.9635 | 0.9626 | 0.9630 | 0.9652 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3