Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
inference: false
|
4 |
+
datasets:
|
5 |
+
- ibm-research/otter_uniprot_bindingdb
|
6 |
+
---
|
7 |
+
|
8 |
+
# Otter UB MF Model Card
|
9 |
+
|
10 |
+
Otter-Knoweldge model trained using only one modality for molecules: molgen (MG)
|
11 |
+
|
12 |
+
## Model details
|
13 |
+
Otter models are based on Graph Neural Networks (GNN) that propagates initial embeddings through a set of layers that upgrade input embedding according to the node neighbours.
|
14 |
+
The architecture of GNN consists of two main blocks: encoder and decoder.
|
15 |
+
- For encoder we first define a projection layer which consists of a set of linear transformations for each node modality and projects nodes into common dimensionality, then we apply several multi-relational graph convolutional layers (R-GCN) which distinguish between different types of edges between source and target nodes by having a set of trainable parameters for each edge type.
|
16 |
+
- For decoder we consider link prediction task, which consists of a scoring function that maps each triple of source and target nodes and the corresponding edge and maps that to a scalar number defined over interval [0; 1].
|
17 |
+
|
18 |
+
|
19 |
+
**Model training data:**
|
20 |
+
|
21 |
+
The model was trained over *Uniprot-BindingDB*
|
22 |
+
|
23 |
+
|
24 |
+
**Paper or resources for more information:**
|
25 |
+
- [GitHub Repo](https://github.com/IBM/otter-knowledge)
|
26 |
+
- [Paper](https://arxiv.org/abs/2306.12802)
|
27 |
+
|
28 |
+
**License:**
|
29 |
+
|
30 |
+
MIT
|
31 |
+
|
32 |
+
**Where to send questions or comments about the model:**
|
33 |
+
- [GitHub Repo](https://github.com/IBM/otter-knowledge)
|
34 |
+
|
35 |
+
## How to use
|
36 |
+
|
37 |
+
Clone the repo:
|
38 |
+
```sh
|
39 |
+
git clone https://github.com/IBM/otter-knowledge.git
|
40 |
+
cd otter-knowledge
|
41 |
+
```
|
42 |
+
|
43 |
+
- Use the BindingAffinity Class:
|
44 |
+
|
45 |
+
```python
|
46 |
+
import torch
|
47 |
+
from torch import nn
|
48 |
+
|
49 |
+
|
50 |
+
class BindingAffinity(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, gnn, drug_modality):
|
53 |
+
super(BindingAffinity, self).__init__()
|
54 |
+
self.drug_modality = drug_modality
|
55 |
+
self.protein_modality = 'protein-sequence-mean'
|
56 |
+
self.drug_entity_name = 'Drug'
|
57 |
+
self.protein_entity_name = 'Protein'
|
58 |
+
self.drug_rel_id = 1
|
59 |
+
self.protein_rel_id = 2
|
60 |
+
self.protein_drug_rel_id = 0
|
61 |
+
self.gnn = gnn
|
62 |
+
self.device = 'cpu'
|
63 |
+
hd1 = 512
|
64 |
+
num_input = 2
|
65 |
+
self.combine = torch.nn.ModuleList([nn.Linear(num_input * hd1, hd1), nn.ReLU(),
|
66 |
+
nn.Linear(hd1, hd1), nn.ReLU(),
|
67 |
+
nn.Linear(hd1, 1)])
|
68 |
+
self.to(self.device)
|
69 |
+
|
70 |
+
def forward(self, drug_embedding, protein_embedding):
|
71 |
+
nodes = {
|
72 |
+
self.drug_modality: {
|
73 |
+
'embeddings': drug_embedding.unsqueeze(0).to(self.device),
|
74 |
+
'node_indices': torch.tensor([1]).to(self.device)
|
75 |
+
},
|
76 |
+
self.drug_entity_name: {
|
77 |
+
'embeddings': [None],
|
78 |
+
'node_indices': torch.tensor([0]).to(self.device)
|
79 |
+
},
|
80 |
+
self.protein_modality: {
|
81 |
+
'embeddings': protein_embedding.unsqueeze(0).to(self.device),
|
82 |
+
'node_indices': torch.tensor([3]).to(self.device)
|
83 |
+
},
|
84 |
+
self.protein_entity_name: {
|
85 |
+
'embeddings': [None],
|
86 |
+
'node_indices': torch.tensor([2]).to(self.device)
|
87 |
+
}
|
88 |
+
}
|
89 |
+
triples = torch.tensor([[1, 3],
|
90 |
+
[3, 4],
|
91 |
+
[0, 2]]).to(self.device)
|
92 |
+
gnn_embeddings = self.gnn.encoder(nodes, triples)
|
93 |
+
node_gnn_embeddings = []
|
94 |
+
all_indices = [0, 2]
|
95 |
+
|
96 |
+
for indices in all_indices:
|
97 |
+
node_gnn_embedding = torch.index_select(gnn_embeddings, dim=0, index=torch.tensor(indices).to(self.device))
|
98 |
+
node_gnn_embeddings.append(node_gnn_embedding)
|
99 |
+
|
100 |
+
c = torch.cat(node_gnn_embeddings, dim=-1)
|
101 |
+
for m in self.combine:
|
102 |
+
c = m(c)
|
103 |
+
|
104 |
+
return c```
|
105 |
+
|
106 |
+
- Run the inference with the initial embeddings (embeddings obtained after using the handlers (Molgen, ESM1b) over the SMILES and the protein sequence):
|
107 |
+
|
108 |
+
```python
|
109 |
+
p = net(drug_embedding=drug_embedding, protein_embedding=protein_embedding)
|
110 |
+
print(p)```
|