# lightning.pytorch==2.4.0 seed_everything: 2 trainer: logger: true max_epochs: 100 log_every_n_steps: 1 callbacks: - class_path: EarlyStopping init_args: monitor: val/loss patience: 15 - class_path: LearningRateMonitor init_args: logging_interval: epoch enable_progress_bar: false precision: bf16-mixed model: class_path: terratorch.tasks.SemanticSegmentationTask init_args: model_factory: EncoderDecoderFactory model_args: backbone: prithvi_eo_v2_300 backbone_pretrained: true backbone_bands: ["BLUE", "GREEN", "RED", "NIR_NARROW", "SWIR_1", "SWIR_2"] necks: - name: SelectIndices indices: [5, 11, 17, 23] - name: ReshapeTokensToImage - name: LearnedInterpolateToPyramidal decoder: UNetDecoder decoder_channels: [512, 256, 128, 64] num_classes: 2 loss: ce ignore_index: -1 freeze_backbone: false plot_on_val: false class_names: [Not burned, Burn scar] optimizer: class_path: torch.optim.AdamW init_args: lr: 1.e-4 lr_scheduler: class_path: ReduceLROnPlateau init_args: monitor: val/loss factor: 0.5 patience: 4 data: class_path: GenericNonGeoSegmentationDataModule init_args: batch_size: 8 num_workers: 8 dataset_bands: # Dataset bands - BLUE - GREEN - RED - NIR_NARROW - SWIR_1 - SWIR_2 output_bands: # Model input bands - BLUE - GREEN - RED - NIR_NARROW - SWIR_1 - SWIR_2 rgb_indices: - 2 - 1 - 0 train_data_root: hls_burn_scars/data val_data_root: hls_burn_scars/data test_data_root: hls_burn_scars/data train_split: hls_burn_scars/splits/train.txt val_split: hls_burn_scars/splits/val.txt test_split: hls_burn_scars/splits/test.txt img_grep: "*_merged.tif" label_grep: "*.mask.tif" means: - 0.033349706741586264 - 0.05701185520536176 - 0.05889748132001316 - 0.2323245113436119 - 0.1972854853760658 - 0.11944914225186566 stds: - 0.02269135568823774 - 0.026807560223070237 - 0.04004109844362779 - 0.07791732423672691 - 0.08708738838140137 - 0.07241979477437814 num_classes: 2 train_transform: - class_path: albumentations.D4 - class_path: ToTensorV2 test_transform: - class_path: ToTensorV2 no_data_replace: 0 no_label_replace: -1