TerraTorch
File size: 9,870 Bytes
6a5609b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

import argparse
import os
from typing import List, Union
import re
import datetime
import numpy as np
import rasterio
import torch
import yaml
from einops import rearrange
from terratorch.cli_tools import LightningInferenceModel

NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
OFFSET = 0
PERCENTILE = 99


def process_channel_group(orig_img, channels):
    """
    Args:
        orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
        channels: list of indices representing RGB channels.

    Returns:
        torch.Tensor with shape (num_channels, height, width) for original image
    """

    orig_img = orig_img[channels, ...]
    valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
    valid_mask[orig_img == NO_DATA_FLOAT] = False


    # Rescale (enhancing contrast)
    max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
    min_value = OFFSET

    orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)

    # No data as zeros
    orig_img[~valid_mask] = 0

    return orig_img


def read_geotiff(file_path: str):
    """Read all bands from *file_path* and return image + meta info.

    Args:
        file_path: path to image file.

    Returns:
        np.ndarray with shape (bands, height, width)
        meta info dict
    """

    with rasterio.open(file_path) as src:
        img = src.read()
        meta = src.meta
        try:
            coords = src.lnglat()
        except:
            # Cannot read coords
            coords = None

    return img, meta, coords


def save_geotiff(image, output_path: str, meta: dict):
    """Save multi-band image in Geotiff file.

    Args:
        image: np.ndarray with shape (bands, height, width)
        output_path: path where to save the image
        meta: dict with meta info.
    """

    with rasterio.open(output_path, "w", **meta) as dest:
        for i in range(image.shape[0]):
            dest.write(image[i, :, :], i + 1)

    return


def _convert_np_uint8(float_image: torch.Tensor):
    image = float_image.numpy() * 255.0
    image = image.astype(dtype=np.uint8)

    return image


def load_example(
    file_paths: List[str],
    mean: List[float] = None,
    std: List[float] = None,
    indices: Union[list[int], None] = None,
):
    """Build an input example by loading images in *file_paths*.

    Args:
        file_paths: list of file paths .
        mean: list containing mean values for each band in the images in *file_paths*.
        std: list containing std values for each band in the images in *file_paths*.

    Returns:
        np.array containing created example
        list of meta info for each image in *file_paths*
    """

    imgs = []
    metas = []
    temporal_coords = []
    location_coords = []

    for file in file_paths:
        img, meta, coords = read_geotiff(file)

        # Rescaling (don't normalize on nodata)
        img = np.moveaxis(img, 0, -1)  # channels last for rescaling
        if indices is not None:
            img = img[..., indices]
        if mean is not None and std is not None:
            img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)

        imgs.append(img)
        metas.append(meta)
        if coords is not None:
            location_coords.append(coords)

        try:
            match = re.search(r'(\d{7,8}T\d{6})', file)
            if match:
                year = int(match.group(1)[:4])
                julian_day = match.group(1).split('T')[0][4:]
                if len(julian_day) == 3:
                    julian_day = int(julian_day)
                else:
                    julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
                temporal_coords.append([year, julian_day])
        except Exception as e:
            print(f'Could not extract timestamp for {file} ({e})')

    imgs = np.stack(imgs, axis=0)  # num_frames, H, W, C
    imgs = np.moveaxis(imgs, -1, 0).astype("float32")  # C, num_frames, H, W
    imgs = np.expand_dims(imgs, axis=0)  # add batch di

    return imgs, temporal_coords, location_coords, metas


def run_model(input_data, model, datamodule, img_size):
    # Reflect pad if not divisible by img_size
    original_h, original_w = input_data.shape[-2:]
    pad_h = (img_size - (original_h % img_size)) % img_size
    pad_w = (img_size - (original_w % img_size)) % img_size
    input_data = np.pad(
        input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
    )

    # Build sliding window

    batch_size = 1
    batch = torch.tensor(input_data, device="cpu")
    windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
    h1, w1 = windows.shape[3:5]
    windows = rearrange(
        windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
    )

    # Split into batches if number of windows > batch_size
    num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
    windows = torch.tensor_split(windows, num_batches, dim=0)

    # Run model
    pred_imgs = []
    for x in windows:
        # Apply standardization
        x = datamodule.test_transform(image=x.squeeze().numpy().transpose(1,2,0))
        x['image'] = x['image'].unsqueeze(0)
        x = datamodule.aug(x)['image']

        with torch.no_grad():
            x = x.to(model.device)
            pred = model(x)
            pred = pred.output.detach().cpu()

        y_hat = pred.argmax(dim=1)

        y_hat = torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(), size=img_size, mode="nearest")

        pred_imgs.append(y_hat)

    pred_imgs = torch.concat(pred_imgs, dim=0)

    # Build images from patches
    pred_imgs = rearrange(
        pred_imgs,
        "(b h1 w1) c h w -> b c (h1 h) (w1 w)",
        h=img_size,
        w=img_size,
        b=1,
        c=1,
        h1=h1,
        w1=w1,
    )

    # Cut padded area back to original size
    pred_imgs = pred_imgs[..., :original_h, :original_w]

    # Squeeze (batch size 1)
    pred_imgs = pred_imgs[0]

    return pred_imgs


def main(
    data_file: str,
    config: str,
    checkpoint: str,
    output_dir: str,
    rgb_outputs: bool,
    input_indices: list[int] = None,
):
    os.makedirs(output_dir, exist_ok=True)

    with open(config, "r") as f:
        config_dict = yaml.safe_load(f)

    # Load model ---------------------------------------------------------------------------------

    lightning_model = LightningInferenceModel.from_config(config, checkpoint)
    img_size = 512  # Size of BurnScars

    # Loading data ---------------------------------------------------------------------------------

    input_data, temporal_coords, location_coords, meta_data = load_example(
        file_paths=[data_file], indices=input_indices,
    )

    meta_data = meta_data[0]  # only one image

    if input_data.mean() > 1:
        input_data = input_data / 10000  # Convert to range 0-1

    # Running model --------------------------------------------------------------------------------

    lightning_model.model.eval()

    channels = config_dict['data']['init_args']['rgb_indices']

    pred = run_model(input_data, lightning_model.model, lightning_model.datamodule, img_size)

    # Save pred
    meta_data.update(count=1, dtype="uint8", compress="lzw", nodata=0)
    pred_file = os.path.join(output_dir, f"pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
    save_geotiff(_convert_np_uint8(pred), pred_file, meta_data)

    # Save image + pred
    meta_data.update(count=3, dtype="uint8", compress="lzw", nodata=0)

    if input_data.mean() < 1:
        input_data = input_data * 10000  # Scale to 0-10000

    rgb_orig = process_channel_group(
        orig_img=torch.Tensor(input_data[0, :, 0, ...]),
        channels=channels,
    )

    pred[pred == 0.] = np.nan
    img_pred = rgb_orig * 0.7 + pred * 0.3
    img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]

    img_pred_file = os.path.join(output_dir, f"rgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
    save_geotiff(
        image=_convert_np_uint8(img_pred),
        output_path=img_pred_file,
        meta=meta_data,
    )

    # Save image rgb
    if rgb_outputs:
        rgb_file = os.path.join(output_dir, f"original_rgb_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
        save_geotiff(
            image=_convert_np_uint8(rgb_orig),
            output_path=rgb_file,
            meta=meta_data,
        )

    print("Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser("run inference", add_help=False)

    parser.add_argument(
        "--data_file",
        type=str,
        default="examples/subsetted_512x512_HLS.S30.T10SEH.2018190.v1.4_merged.tif",
        help="Path to the file.",
    )
    parser.add_argument(
        "--config",
        "-c",
        type=str,
        default="burn_scars_config.yaml",
        help="Path to yaml file containing model parameters.",
    )
    parser.add_argument(
        "--checkpoint",
        type=str,
        default="Prithvi_EO_V2_300M_BurnScars.pt",
        help="Path to a checkpoint file to load from.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Path to the directory where to save outputs.",
    )
    parser.add_argument(
        "--input_indices",
        default=[0,1,2,3,4,5],
        type=int,
        nargs="+",
        help="0-based indices of the six Prithvi channels to be selected from the input. By default selects [0,1,2,3,4,5] for filtered HLS data.",
    )
    parser.add_argument(
        "--rgb_outputs",
        action="store_true",
        help="If present, output files will only contain RGB channels. "
        "Otherwise, all bands will be saved.",
    )
    args = parser.parse_args()

    main(**vars(args))