File size: 9,870 Bytes
6a5609b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import argparse
import os
from typing import List, Union
import re
import datetime
import numpy as np
import rasterio
import torch
import yaml
from einops import rearrange
from terratorch.cli_tools import LightningInferenceModel
NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
OFFSET = 0
PERCENTILE = 99
def process_channel_group(orig_img, channels):
"""
Args:
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
channels: list of indices representing RGB channels.
Returns:
torch.Tensor with shape (num_channels, height, width) for original image
"""
orig_img = orig_img[channels, ...]
valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
valid_mask[orig_img == NO_DATA_FLOAT] = False
# Rescale (enhancing contrast)
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
min_value = OFFSET
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
# No data as zeros
orig_img[~valid_mask] = 0
return orig_img
def read_geotiff(file_path: str):
"""Read all bands from *file_path* and return image + meta info.
Args:
file_path: path to image file.
Returns:
np.ndarray with shape (bands, height, width)
meta info dict
"""
with rasterio.open(file_path) as src:
img = src.read()
meta = src.meta
try:
coords = src.lnglat()
except:
# Cannot read coords
coords = None
return img, meta, coords
def save_geotiff(image, output_path: str, meta: dict):
"""Save multi-band image in Geotiff file.
Args:
image: np.ndarray with shape (bands, height, width)
output_path: path where to save the image
meta: dict with meta info.
"""
with rasterio.open(output_path, "w", **meta) as dest:
for i in range(image.shape[0]):
dest.write(image[i, :, :], i + 1)
return
def _convert_np_uint8(float_image: torch.Tensor):
image = float_image.numpy() * 255.0
image = image.astype(dtype=np.uint8)
return image
def load_example(
file_paths: List[str],
mean: List[float] = None,
std: List[float] = None,
indices: Union[list[int], None] = None,
):
"""Build an input example by loading images in *file_paths*.
Args:
file_paths: list of file paths .
mean: list containing mean values for each band in the images in *file_paths*.
std: list containing std values for each band in the images in *file_paths*.
Returns:
np.array containing created example
list of meta info for each image in *file_paths*
"""
imgs = []
metas = []
temporal_coords = []
location_coords = []
for file in file_paths:
img, meta, coords = read_geotiff(file)
# Rescaling (don't normalize on nodata)
img = np.moveaxis(img, 0, -1) # channels last for rescaling
if indices is not None:
img = img[..., indices]
if mean is not None and std is not None:
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
imgs.append(img)
metas.append(meta)
if coords is not None:
location_coords.append(coords)
try:
match = re.search(r'(\d{7,8}T\d{6})', file)
if match:
year = int(match.group(1)[:4])
julian_day = match.group(1).split('T')[0][4:]
if len(julian_day) == 3:
julian_day = int(julian_day)
else:
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
temporal_coords.append([year, julian_day])
except Exception as e:
print(f'Could not extract timestamp for {file} ({e})')
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
imgs = np.expand_dims(imgs, axis=0) # add batch di
return imgs, temporal_coords, location_coords, metas
def run_model(input_data, model, datamodule, img_size):
# Reflect pad if not divisible by img_size
original_h, original_w = input_data.shape[-2:]
pad_h = (img_size - (original_h % img_size)) % img_size
pad_w = (img_size - (original_w % img_size)) % img_size
input_data = np.pad(
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
)
# Build sliding window
batch_size = 1
batch = torch.tensor(input_data, device="cpu")
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
h1, w1 = windows.shape[3:5]
windows = rearrange(
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
)
# Split into batches if number of windows > batch_size
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
windows = torch.tensor_split(windows, num_batches, dim=0)
# Run model
pred_imgs = []
for x in windows:
# Apply standardization
x = datamodule.test_transform(image=x.squeeze().numpy().transpose(1,2,0))
x['image'] = x['image'].unsqueeze(0)
x = datamodule.aug(x)['image']
with torch.no_grad():
x = x.to(model.device)
pred = model(x)
pred = pred.output.detach().cpu()
y_hat = pred.argmax(dim=1)
y_hat = torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(), size=img_size, mode="nearest")
pred_imgs.append(y_hat)
pred_imgs = torch.concat(pred_imgs, dim=0)
# Build images from patches
pred_imgs = rearrange(
pred_imgs,
"(b h1 w1) c h w -> b c (h1 h) (w1 w)",
h=img_size,
w=img_size,
b=1,
c=1,
h1=h1,
w1=w1,
)
# Cut padded area back to original size
pred_imgs = pred_imgs[..., :original_h, :original_w]
# Squeeze (batch size 1)
pred_imgs = pred_imgs[0]
return pred_imgs
def main(
data_file: str,
config: str,
checkpoint: str,
output_dir: str,
rgb_outputs: bool,
input_indices: list[int] = None,
):
os.makedirs(output_dir, exist_ok=True)
with open(config, "r") as f:
config_dict = yaml.safe_load(f)
# Load model ---------------------------------------------------------------------------------
lightning_model = LightningInferenceModel.from_config(config, checkpoint)
img_size = 512 # Size of BurnScars
# Loading data ---------------------------------------------------------------------------------
input_data, temporal_coords, location_coords, meta_data = load_example(
file_paths=[data_file], indices=input_indices,
)
meta_data = meta_data[0] # only one image
if input_data.mean() > 1:
input_data = input_data / 10000 # Convert to range 0-1
# Running model --------------------------------------------------------------------------------
lightning_model.model.eval()
channels = config_dict['data']['init_args']['rgb_indices']
pred = run_model(input_data, lightning_model.model, lightning_model.datamodule, img_size)
# Save pred
meta_data.update(count=1, dtype="uint8", compress="lzw", nodata=0)
pred_file = os.path.join(output_dir, f"pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(_convert_np_uint8(pred), pred_file, meta_data)
# Save image + pred
meta_data.update(count=3, dtype="uint8", compress="lzw", nodata=0)
if input_data.mean() < 1:
input_data = input_data * 10000 # Scale to 0-10000
rgb_orig = process_channel_group(
orig_img=torch.Tensor(input_data[0, :, 0, ...]),
channels=channels,
)
pred[pred == 0.] = np.nan
img_pred = rgb_orig * 0.7 + pred * 0.3
img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]
img_pred_file = os.path.join(output_dir, f"rgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(
image=_convert_np_uint8(img_pred),
output_path=img_pred_file,
meta=meta_data,
)
# Save image rgb
if rgb_outputs:
rgb_file = os.path.join(output_dir, f"original_rgb_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(
image=_convert_np_uint8(rgb_orig),
output_path=rgb_file,
meta=meta_data,
)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser("run inference", add_help=False)
parser.add_argument(
"--data_file",
type=str,
default="examples/subsetted_512x512_HLS.S30.T10SEH.2018190.v1.4_merged.tif",
help="Path to the file.",
)
parser.add_argument(
"--config",
"-c",
type=str,
default="burn_scars_config.yaml",
help="Path to yaml file containing model parameters.",
)
parser.add_argument(
"--checkpoint",
type=str,
default="Prithvi_EO_V2_300M_BurnScars.pt",
help="Path to a checkpoint file to load from.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Path to the directory where to save outputs.",
)
parser.add_argument(
"--input_indices",
default=[0,1,2,3,4,5],
type=int,
nargs="+",
help="0-based indices of the six Prithvi channels to be selected from the input. By default selects [0,1,2,3,4,5] for filtered HLS data.",
)
parser.add_argument(
"--rgb_outputs",
action="store_true",
help="If present, output files will only contain RGB channels. "
"Otherwise, all bands will be saved.",
)
args = parser.parse_args()
main(**vars(args)) |