improved_sen1flood11_lr
#4
by
carlosgomes98
- opened
- README.md +1 -1
- sen1floods11_Prithvi_100M.py +5 -3
README.md
CHANGED
@@ -28,7 +28,7 @@ We extract the following bands for flood mapping:
|
|
28 |
5. SWIR 1
|
29 |
6. SWIR 2
|
30 |
|
31 |
-
Labels represent no water (class 0), water/flood (class 1), and no data/clouds (class
|
32 |
|
33 |
The Prithvi-100m model was initially pretrained using a sequence length of 3 timesteps. Based on the characteristics of this benchmark dataset, we focus on single-timestamp segmentation. This demonstrates that our model can be utilized with an arbitrary number of timestamps during finetuning.
|
34 |
|
|
|
28 |
5. SWIR 1
|
29 |
6. SWIR 2
|
30 |
|
31 |
+
Labels represent no water (class 0), water/flood (class 1), and no data/clouds (class 2).
|
32 |
|
33 |
The Prithvi-100m model was initially pretrained using a sequence length of 3 timesteps. Based on the characteristics of this benchmark dataset, we focus on single-timestamp segmentation. This demonstrates that our model can be utilized with an arbitrary number of timestamps during finetuning.
|
34 |
|
sen1floods11_Prithvi_100M.py
CHANGED
@@ -74,7 +74,8 @@ train_pipeline = [
|
|
74 |
type="LoadGeospatialImageFromFile",
|
75 |
to_float32=False,
|
76 |
nodata=image_nodata,
|
77 |
-
nodata_replace=image_nodata_replace
|
|
|
78 |
),
|
79 |
dict(
|
80 |
type="LoadGeospatialAnnotations",
|
@@ -106,7 +107,8 @@ test_pipeline = [
|
|
106 |
type="LoadGeospatialImageFromFile",
|
107 |
to_float32=False,
|
108 |
nodata=image_nodata,
|
109 |
-
nodata_replace=image_nodata_replace
|
|
|
110 |
),
|
111 |
dict(type="BandsExtract", bands=bands),
|
112 |
dict(type="ConstantMultiply", constant=constant),
|
@@ -224,9 +226,9 @@ ce_weights = [0.3, 0.7]
|
|
224 |
model = dict(
|
225 |
type="TemporalEncoderDecoder",
|
226 |
frozen_backbone=False,
|
227 |
-
pretrained=pretrained_weights_path,
|
228 |
backbone=dict(
|
229 |
type="TemporalViTEncoder",
|
|
|
230 |
img_size=img_size,
|
231 |
patch_size=patch_size,
|
232 |
num_frames=num_frames,
|
|
|
74 |
type="LoadGeospatialImageFromFile",
|
75 |
to_float32=False,
|
76 |
nodata=image_nodata,
|
77 |
+
nodata_replace=image_nodata_replace,
|
78 |
+
channels_last=False
|
79 |
),
|
80 |
dict(
|
81 |
type="LoadGeospatialAnnotations",
|
|
|
107 |
type="LoadGeospatialImageFromFile",
|
108 |
to_float32=False,
|
109 |
nodata=image_nodata,
|
110 |
+
nodata_replace=image_nodata_replace,
|
111 |
+
channels_last=False
|
112 |
),
|
113 |
dict(type="BandsExtract", bands=bands),
|
114 |
dict(type="ConstantMultiply", constant=constant),
|
|
|
226 |
model = dict(
|
227 |
type="TemporalEncoderDecoder",
|
228 |
frozen_backbone=False,
|
|
|
229 |
backbone=dict(
|
230 |
type="TemporalViTEncoder",
|
231 |
+
pretrained=pretrained_weights_path,
|
232 |
img_size=img_size,
|
233 |
patch_size=patch_size,
|
234 |
num_frames=num_frames,
|