|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.models.auto import CONFIG_MAPPING, AutoConfig |
|
|
|
|
|
class GraniteSpeechEncoderConfig(PretrainedConfig): |
|
model_type = "granite_speech_encoder" |
|
|
|
def __init__( |
|
self, |
|
input_dim=160, |
|
num_layers=10, |
|
hidden_dim=1024, |
|
feedforward_mult=4, |
|
num_heads=8, |
|
dim_head=128, |
|
output_dim=42, |
|
context_size=200, |
|
dropout=0.1, |
|
conv_kernel_size=15, |
|
conv_expansion_factor=2, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.input_dim = input_dim |
|
self.num_layers = num_layers |
|
self.hidden_dim = hidden_dim |
|
self.feedforward_mult = feedforward_mult |
|
self.num_heads = num_heads |
|
self.dim_head = dim_head |
|
self.output_dim = output_dim |
|
self.context_size = context_size |
|
self.dropout = dropout |
|
self.conv_kernel_size = conv_kernel_size |
|
self.conv_expansion_factor = conv_expansion_factor |
|
|
|
|
|
|
|
class GraniteSpeechProjectorConfig(PretrainedConfig): |
|
model_type = "granite_speech_qformer" |
|
|
|
def __init__( |
|
self, |
|
llm_dim=4096, |
|
downsample_rate=5, |
|
window_size=15, |
|
hidden_size=1024, |
|
num_attention_heads=16, |
|
intermediate_size=4096, |
|
num_hidden_layers=2, |
|
encoder_hidden_size=1024, |
|
cross_attention_frequency=1, |
|
max_position_embeddings=2048, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_qformer_text_input=False, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.cross_attention_frequency = cross_attention_frequency |
|
self.encoder_hidden_size = encoder_hidden_size |
|
self.use_qformer_text_input = use_qformer_text_input |
|
self.downsample_rate = downsample_rate |
|
self.window_size = window_size |
|
self.llm_dim = llm_dim |
|
|
|
|
|
class GraniteSpeechConfig(PretrainedConfig): |
|
model_type = "granite_speech" |
|
sub_configs = { |
|
"text_config": AutoConfig, |
|
"encoder_config": GraniteSpeechEncoderConfig, |
|
"projector_config": GraniteSpeechProjectorConfig, |
|
} |
|
|
|
def __init__( |
|
self, |
|
encoder_config=None, |
|
text_config=None, |
|
projector_config=None, |
|
audio_token_index=49155, |
|
initializer_range=0.02, |
|
has_lora_adapter=True, |
|
**kwargs, |
|
): |
|
if isinstance(text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "granite" |
|
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
elif text_config is None: |
|
text_config = CONFIG_MAPPING["granite"]() |
|
|
|
if isinstance(projector_config, dict): |
|
|
|
projector_config = GraniteSpeechProjectorConfig(**projector_config) |
|
elif projector_config is None: |
|
projector_config = GraniteSpeechProjectorConfig() |
|
|
|
if not isinstance(encoder_config, GraniteSpeechEncoderConfig): |
|
encoder_config = {} if encoder_config is None else encoder_config |
|
encoder_config = GraniteSpeechEncoderConfig(**encoder_config) |
|
|
|
self.text_config = text_config |
|
self.encoder_config = encoder_config |
|
self.projector_config = projector_config |
|
self.audio_token_index = audio_token_index |
|
self.initializer_range = initializer_range |
|
self.has_lora_adapter = has_lora_adapter |
|
super().__init__(**kwargs) |
|
|
|
|
|
__all__ = ["GraniteSpeechEncoderConfig", "GraniteSpeechProjectorConfig", "GraniteSpeechConfig"] |
|
|