Update README.md
Browse filesFixed the model name and sparse vector format
README.md
CHANGED
@@ -68,7 +68,7 @@ client.create_collection(
|
|
68 |
)
|
69 |
|
70 |
embeddings_model = model.sparse.SpladeEmbeddingFunction(
|
71 |
-
model_name="ibm-granite/granite-embedding-30m-sparse
|
72 |
device="cpu",
|
73 |
batch_size=2,
|
74 |
k_tokens_query=50,
|
@@ -81,7 +81,11 @@ docs = [
|
|
81 |
"Alan Turing was the first person to conduct substantial research in AI.",
|
82 |
"Born in Maida Vale, London, Turing was raised in southern England.",
|
83 |
]
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
|
86 |
client.insert(
|
87 |
collection_name="my_sparse_collection",
|
|
|
68 |
)
|
69 |
|
70 |
embeddings_model = model.sparse.SpladeEmbeddingFunction(
|
71 |
+
model_name="ibm-granite/granite-embedding-30m-sparse",
|
72 |
device="cpu",
|
73 |
batch_size=2,
|
74 |
k_tokens_query=50,
|
|
|
81 |
"Alan Turing was the first person to conduct substantial research in AI.",
|
82 |
"Born in Maida Vale, London, Turing was raised in southern England.",
|
83 |
]
|
84 |
+
|
85 |
+
# SpladeEmbeddingFunction.encode_documents returns sparse matrix or sparse array depending
|
86 |
+
# on the milvus-model version. reshape(1,-1) ensures the format is correct for ingestion.
|
87 |
+
doc_vector = [{"embeddings": doc_emb.reshape(1,-1), "id": f"item_{i}"} for i, doc_emb in enumerate(embeddings_model.encode_documents(docs))]
|
88 |
+
|
89 |
|
90 |
client.insert(
|
91 |
collection_name="my_sparse_collection",
|