--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-4.0 base_model: - ibm-granite/granite-4.0-tiny-base-preview --- # Granite-4.0-Tiny-Preview **Model Summary:** Granite-4-Tiny-Preview is a 7B parameter fine-grained hybrid mixture-of-experts (MoE) instruct model finetuned from Granite-4.0-Tiny-Base-Preview using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, and model alignment using reinforcement learning. - **Developers:** Granite Team, IBM - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/) - **Release Date**: May 2nd, 2025 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) **Supported Languages:** English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages. **Intended Use:** This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications. **Capabilities** * Thinking * Summarization * Text classification * Text extraction * Question-answering * Retrieval Augmented Generation (RAG) * Code related tasks * Function-calling tasks * Multilingual dialog use cases * Long-context tasks including long document/meeting summarization, long document QA, etc. **Installation:** You need to install transformer from source to use this checkpoint. HuggingFace PR: https://github.com/huggingface/transformers/pull/37658 Install transformer from source: https://huggingface.co/docs/transformers/en/installation#install-from-source **Generation:** After installation, copy the code snippet below to run the example. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed import torch model_path="ibm-granite/granite-4.0-tiny-preview" device="cuda" model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained( model_path ) conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}] input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device) set_seed(42) output = model.generate( **input_ids, max_new_tokens=8192, ) prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True) print(prediction) ``` **Evaluation Results:**
Models | Arena-Hard | AlpacaEval-2.0 | MMLU | PopQA | TruthfulQA | BigBenchHard | DROP | GSM8K | HumanEval | HumanEval+ | IFEval | AttaQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Granite-3.3-2B-Instruct | 28.86 | 43.45 | 55.88 | 18.4 | 58.97 | 52.51 | 35.98 | 72.48 | 80.51 | 75.68 | 65.8 | 87.47 |
Granite-3.3-8B-Instruct | 57.56 | 62.68 | 65.54 | 26.17 | 66.86 | 59.01 | 41.53 | 80.89 | 89.73 | 86.09 | 74.82 | 88.5 |
Granite-4.0-Tiny-Preview | 26.70 | 35.16 | 60.40 | 22.93 | 58.07 | 55.71 | 46.22 | 70.05 | 82.41 | 78.33 | 63.03 | 86.10 |