ppo-LunarLander-v2 / config.json
ianspektor's picture
Upload PPO LunarLander-v2 trained agent
006cdf9
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d13e4f8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d13e4f950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d13e4f9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d13e4fa70>", "_build": "<function ActorCriticPolicy._build at 0x7f9d13e4fb00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d13e4fb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d13e4fc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d13e4fcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d13e4fd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d13e4fdd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d13e4fe60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d13e23600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653919867.371032, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzeo/PlJYrTyriPS6wwZmuZu9ND6e2C46AACAPwAAgD8A/989934YPjmNyT2exQC+/ychPAdKjT0AAAAAAAAAAJO1Iz7DuBa85t+oOuQkkbgQM4S96m3RuQAAgD8AAIA/lpykPmcFAr0gcIU6vfsZOFcmNb5qAEO3AACAPwAAgD/6JIY+4Tb8uqpbC7wz0kI8RGwdvH5RLD0AAIA/AACAP8bSAb7DwWS6ekneOQtNfbavpdg66kEBuQAAgD8AAIA/YNtMPhIc1TyG3Vw4afQGNzBbZj7i0523AACAPwAAgD/62EM+XEEDPYIDGrzGQL260/CTPs2r6LsAAIA/AACAP2a9XL3DgUS69CuYumE7fDbEcDc6zYKxOQAAgD8AAIA/M+aQvHvgj7pA2J07tU+COGIz87pu+MW4AACAPwAAgD/NSg68hXuuuWX3m7l1XE42X4HEOxN3uDgAAIA/AACAP/OEnD6XEkY/X5FHPYUjyL45ELg9JkkjvgAAAAAAAAAAYPQPvt/7ND/WUyw+NG+avpkAezvW3uw9AAAAAAAAAACz1RM9FGiouhHtD7uNnNw1487COvclJDoAAIA/AACAP82k5D2Fw6u505OWu6xnE7qWLba6m3l3ugAAgD8AAIA/rd2APuwnrjxO4Y86hU+aOBlBPj7L1ps5AACAPwAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1LZhFAQ7XkCUhpRSlIwBbJRN6AOMAXSUR0CGa2+zMRpUdX2UKGgGaAloD0MIdcx5xr4YPkCUhpRSlGgVTegDaBZHQIZ15kRSP2h1fZQoaAZoCWgPQwjRPlbw2/hdQJSGlFKUaBVN6ANoFkdAhoFXsgMc63V9lChoBmgJaA9DCB6n6Eguv11AlIaUUpRoFU3oA2gWR0CGg/cQiA2AdX2UKGgGaAloD0MIwF/MlqxSSECUhpRSlGgVTegDaBZHQIa7AD1XeWR1fZQoaAZoCWgPQwig/rPmx+9dQJSGlFKUaBVN6ANoFkdAhryTWf9P13V9lChoBmgJaA9DCINNnUdF4GBAlIaUUpRoFU3oA2gWR0CGyEYVqN6xdX2UKGgGaAloD0MIjLlrCfkVW0CUhpRSlGgVTegDaBZHQIbKcxKxs2x1fZQoaAZoCWgPQwid9L7xtZ1eQJSGlFKUaBVN6ANoFkdAhsqWexwAEXV9lChoBmgJaA9DCGthFto5Q1VAlIaUUpRoFU3oA2gWR0CGzebF0gbIdX2UKGgGaAloD0MI3zR9dsC3YECUhpRSlGgVTegDaBZHQIbPHfAKv3d1fZQoaAZoCWgPQwi3Yn/ZPcFhQJSGlFKUaBVN6ANoFkdAhtCQBPsRhHV9lChoBmgJaA9DCCm0rPvHsENAlIaUUpRoFU3oA2gWR0CG3+EEC/47dX2UKGgGaAloD0MId7temiKYNECUhpRSlGgVS+1oFkdAhuLCyY5T63V9lChoBmgJaA9DCP8h/fZ12DnAlIaUUpRoFUv+aBZHQIbmxY7q6e51fZQoaAZoCWgPQwj1nsppzzJlQJSGlFKUaBVN6ANoFkdAhvTpkXk5qHV9lChoBmgJaA9DCOfHX1rU/0xAlIaUUpRoFUu4aBZHQIb3YyXUpd91fZQoaAZoCWgPQwiOA6+Wu0VlQJSGlFKUaBVN6ANoFkdAhv0Z+hGpdnV9lChoBmgJaA9DCDKSPULNt1tAlIaUUpRoFU3oA2gWR0CHBhNC7btadX2UKGgGaAloD0MIiqvKvitOXkCUhpRSlGgVTegDaBZHQIcOIDJU5uJ1fZQoaAZoCWgPQwgWbY5zm7JDQJSGlFKUaBVL0mgWR0CHEQn7YTTOdX2UKGgGaAloD0MIxF29igxgYUCUhpRSlGgVTegDaBZHQIcZEFpwjt51fZQoaAZoCWgPQwjMDYY6rI1kQJSGlFKUaBVN6ANoFkdAhyUBhYvFnHV9lChoBmgJaA9DCGCuRQvQKV9AlIaUUpRoFU3oA2gWR0CHJ529L6DXdX2UKGgGaAloD0MI0GT/PA2ANsCUhpRSlGgVS9ZoFkdAhyzoAn2IwnV9lChoBmgJaA9DCI9VSs/0whJAlIaUUpRoFUvfaBZHQIc2IhOgxrV1fZQoaAZoCWgPQwjp1JXP8mBiQJSGlFKUaBVN6ANoFkdAhzniw0O3D3V9lChoBmgJaA9DCNQoJJnVvWBAlIaUUpRoFU3oA2gWR0CHO0TUy57PdX2UKGgGaAloD0MISG+4j9xJVkCUhpRSlGgVTegDaBZHQIduIzUI9kl1fZQoaAZoCWgPQwg65jxjX4JaQJSGlFKUaBVN6ANoFkdAh3GjnFHavnV9lChoBmgJaA9DCJz4akdxKGRAlIaUUpRoFU3oA2gWR0CHcuTzundgdX2UKGgGaAloD0MI06HT825aXkCUhpRSlGgVTegDaBZHQId0d0Lc9GJ1fZQoaAZoCWgPQwgbSu1FtN0lQJSGlFKUaBVL12gWR0CHeV78ejmCdX2UKGgGaAloD0MIWmQ730/GYECUhpRSlGgVTegDaBZHQIeICu6mO2l1fZQoaAZoCWgPQwjM7PMY5XNlQJSGlFKUaBVN6ANoFkdAh4wnK4hEB3V9lChoBmgJaA9DCPuSjQdb+l5AlIaUUpRoFU3oA2gWR0CHnAr6tT1kdX2UKGgGaAloD0MIsvShC+oZY0CUhpRSlGgVTegDaBZHQIehkQGwA2h1fZQoaAZoCWgPQwiC5nPu9nRiQJSGlFKUaBVN6ANoFkdAh6plg+hXbXV9lChoBmgJaA9DCMU4fxMKgl5AlIaUUpRoFU3oA2gWR0CHsgfV7Qb/dX2UKGgGaAloD0MIlG3gDtTZK8CUhpRSlGgVTQYBaBZHQIfDMojOcDt1fZQoaAZoCWgPQwjvAE9auItcQJSGlFKUaBVN6ANoFkdAh8htP557gXV9lChoBmgJaA9DCARz9Pg9I2FAlIaUUpRoFU3oA2gWR0CHywQ0XP7fdX2UKGgGaAloD0MISKmEJ/RyN0CUhpRSlGgVS+poFkdAh8/l6zE74nV9lChoBmgJaA9DCB0gmKNHHmFAlIaUUpRoFU3oA2gWR0CH0EC6H0sfdX2UKGgGaAloD0MIBTOmYA16YECUhpRSlGgVTegDaBZHQIfYuBczImx1fZQoaAZoCWgPQwhRpWYPtAxgQJSGlFKUaBVN6ANoFkdAh92GHP/rB3V9lChoBmgJaA9DCK6CGOja8zLAlIaUUpRoFUvgaBZHQIgKPzxwyZd1fZQoaAZoCWgPQwjwbI/ecFlYQJSGlFKUaBVN6ANoFkdAiA5wkxASnXV9lChoBmgJaA9DCAqGcw0zjElAlIaUUpRoFU3oA2gWR0CIEavRqoIfdX2UKGgGaAloD0MIvi8uVWn+XkCUhpRSlGgVTegDaBZHQIgS2/N7jT91fZQoaAZoCWgPQwj9SXzuhGBlQJSGlFKUaBVN6ANoFkdAiBRTjNpudnV9lChoBmgJaA9DCEJ23sZmCF1AlIaUUpRoFU3oA2gWR0CIGQtrbg0kdX2UKGgGaAloD0MIqu/8ogTZY0CUhpRSlGgVTegDaBZHQIgmZG2Culp1fZQoaAZoCWgPQwgJ/reSHcpdQJSGlFKUaBVN6ANoFkdAiCpDoQnQY3V9lChoBmgJaA9DCGTnbWx2pl5AlIaUUpRoFU3oA2gWR0CIOixO+IuXdX2UKGgGaAloD0MIT0ATYcMhQcCUhpRSlGgVS+VoFkdAiEQFNL127nV9lChoBmgJaA9DCGA5Qgbyjl9AlIaUUpRoFU3oA2gWR0CISaa9bor4dX2UKGgGaAloD0MIYcWp1sITWUCUhpRSlGgVTegDaBZHQIhkgBvJiiJ1fZQoaAZoCWgPQwgGK061FgdUQJSGlFKUaBVN6ANoFkdAiGm4mTkhinV9lChoBmgJaA9DCMYxkj3CBGJAlIaUUpRoFU3oA2gWR0CIcZdt2s7udX2UKGgGaAloD0MIRMTNqWQjW0CUhpRSlGgVTegDaBZHQIhx9mnO0LN1fZQoaAZoCWgPQwhZTGw+rjBgQJSGlFKUaBVN6ANoFkdAiHqdehPCVXV9lChoBmgJaA9DCIi6D0DqY2FAlIaUUpRoFU3oA2gWR0CIf0dwvQF+dX2UKGgGaAloD0MIBK4rZoTkZUCUhpRSlGgVTegDaBZHQIirU0aZQYV1fZQoaAZoCWgPQwhIFcWrrIhiQJSGlFKUaBVN6ANoFkdAiK9Ac94eLnV9lChoBmgJaA9DCC4AjdKlOWFAlIaUUpRoFU3oA2gWR0CIslWcz67/dX2UKGgGaAloD0MIRYKpZtahXUCUhpRSlGgVTegDaBZHQIizg7q6e5F1fZQoaAZoCWgPQwhIwOjy5nAHwJSGlFKUaBVNCAFoFkdAiLSTIFNcnnV9lChoBmgJaA9DCDtzDwnf3VpAlIaUUpRoFU3oA2gWR0CItPq3VkMDdX2UKGgGaAloD0MIVoDvNu+BY0CUhpRSlGgVTegDaBZHQIi5JaPjn3d1fZQoaAZoCWgPQwi4H/DAgLxiQJSGlFKUaBVN6ANoFkdAiMmA7o0Q9XV9lChoBmgJaA9DCAE0Spf+n15AlIaUUpRoFU3oA2gWR0CI2YJemelLdX2UKGgGaAloD0MIePATB1CAYECUhpRSlGgVTegDaBZHQIjjbt5UtI11fZQoaAZoCWgPQwhbXrneNv1BQJSGlFKUaBVLymgWR0CI5Fk1/DtPdX2UKGgGaAloD0MIgC2vXG//YUCUhpRSlGgVTegDaBZHQIjpIH7gsK91fZQoaAZoCWgPQwj5LM+Du1FiQJSGlFKUaBVN6ANoFkdAiQOSquKXOXV9lChoBmgJaA9DCOONzCN/jWRAlIaUUpRoFU3oA2gWR0CJCOiVSn+AdX2UKGgGaAloD0MI8ia/RadDY0CUhpRSlGgVTegDaBZHQIkREiliz9l1fZQoaAZoCWgPQwicMcwJ2jNfQJSGlFKUaBVN6ANoFkdAiRrMWfseGXV9lChoBmgJaA9DCPIlVHB4h2BAlIaUUpRoFU3oA2gWR0CJH/LvkRzzdX2UKGgGaAloD0MIsYnMXGCKZECUhpRSlGgVTegDaBZHQIko/rIHTql1fZQoaAZoCWgPQwj+RGXDmnhcQJSGlFKUaBVN6ANoFkdAiVGUWM0gsHV9lChoBmgJaA9DCEa0HVN3n19AlIaUUpRoFU3oA2gWR0CJVQJyhi9adX2UKGgGaAloD0MIKgDGM+gXY0CUhpRSlGgVTegDaBZHQIlWUiliz9l1fZQoaAZoCWgPQwhNv0S89fJjQJSGlFKUaBVN6ANoFkdAiVeD2zv7WXV9lChoBmgJaA9DCFxWYTPAP1xAlIaUUpRoFU3oA2gWR0CJV/AAQxvfdX2UKGgGaAloD0MI48Yt5ufgYUCUhpRSlGgVTegDaBZHQIlcDl7tzCF1fZQoaAZoCWgPQwg4vvbMklgmQJSGlFKUaBVL42gWR0CJZRpyIYWMdX2UKGgGaAloD0MIWp9yTBbDMUCUhpRSlGgVS9poFkdAiW2NZ3cHnnV9lChoBmgJaA9DCPeSxmgdFfu/lIaUUpRoFU0AAWgWR0CJd7jNpudgdX2UKGgGaAloD0MIkWCqmTWWYUCUhpRSlGgVTegDaBZHQIl62fdyksV1fZQoaAZoCWgPQwgyPsxetjdjQJSGlFKUaBVN6ANoFkdAiYNWFFlTWHV9lChoBmgJaA9DCF2mJsGbnGBAlIaUUpRoFU3oA2gWR0CJhA87IT4+dX2UKGgGaAloD0MINGjon+DWYUCUhpRSlGgVTegDaBZHQImHxdfLLZB1fZQoaAZoCWgPQwiNfF7xVOlkQJSGlFKUaBVN6ANoFkdAiZ58c2itaXV9lChoBmgJaA9DCN2YnrDEVzpAlIaUUpRoFUvyaBZHQImgQxesxPB1fZQoaAZoCWgPQwjxEpz6QENhQJSGlFKUaBVN6ANoFkdAiaM/HYHxBnV9lChoBmgJaA9DCDHtm/urD2NAlIaUUpRoFU3oA2gWR0CJqolfJFLGdX2UKGgGaAloD0MI5L7VOnEEX0CUhpRSlGgVTegDaBZHQImzIfjjrAx1fZQoaAZoCWgPQwhF2PD0ynFiQJSGlFKUaBVN6ANoFkdAibfQHiWE9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}