File size: 146,210 Bytes
18f5e6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 |
[2023-04-19 16:55:10,332] [WARNING] [runner.py:190:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2023-04-19 16:55:10,380] [INFO] [runner.py:540:main] cmd = /home/ubuntu/miniconda3/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgM119 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None main.py --data_path iamketan25/alpaca-instructions-dataset iamketan25/dolly-instructions-15k iamketan25/gsm-general-qa-instructions --model_name_or_path iamketan25/gpt-neo-1.3b-sft --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --max_seq_len 512 --learning_rate 1e-3 --weight_decay 0.1 --num_train_epochs 1 --gradient_accumulation_steps 2 --lr_scheduler_type cosine --num_warmup_steps 0 --seed 1234 --zero_stage 3 --lora_dim 16 --lora_module_name h. --only_optimize_lora --deepspeed --output_dir ./gpt_neo_1.3b_sft_lora_dim_32_zero_stage3_epoch2
[2023-04-19 16:55:12,124] [INFO] [launch.py:229:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3]}
[2023-04-19 16:55:12,124] [INFO] [launch.py:235:main] nnodes=1, num_local_procs=4, node_rank=0
[2023-04-19 16:55:12,124] [INFO] [launch.py:246:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3]})
[2023-04-19 16:55:12,124] [INFO] [launch.py:247:main] dist_world_size=4
[2023-04-19 16:55:12,124] [INFO] [launch.py:249:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3
[2023-04-19 16:55:15,363] [INFO] [comm.py:586:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
[2023-04-19 16:55:20,249] [INFO] [partition_parameters.py:436:__exit__] finished initializing model with 1.42B parameters
Some weights of GPTNeoForCausalLM were not initialized from the model checkpoint at iamketan25/gpt-neo-1.3b-sft and are newly initialized: ['transformer.h.10.attn.attention.masked_bias', 'transformer.h.9.attn.attention.masked_bias', 'transformer.h.17.attn.attention.masked_bias', 'transformer.h.1.attn.attention.masked_bias', 'transformer.h.12.attn.attention.masked_bias', 'transformer.h.16.attn.attention.masked_bias', 'transformer.h.11.attn.attention.masked_bias', 'transformer.h.6.attn.attention.masked_bias', 'transformer.h.4.attn.attention.masked_bias', 'transformer.h.20.attn.attention.masked_bias', 'transformer.h.14.attn.attention.masked_bias', 'transformer.h.13.attn.attention.masked_bias', 'transformer.h.8.attn.attention.masked_bias', 'transformer.h.7.attn.attention.masked_bias', 'transformer.h.3.attn.attention.masked_bias', 'transformer.h.23.attn.attention.masked_bias', 'transformer.h.18.attn.attention.masked_bias', 'transformer.h.2.attn.attention.masked_bias', 'transformer.h.0.attn.attention.masked_bias', 'transformer.h.5.attn.attention.masked_bias', 'transformer.h.22.attn.attention.masked_bias', 'transformer.h.19.attn.attention.masked_bias', 'transformer.h.21.attn.attention.masked_bias', 'transformer.h.15.attn.attention.masked_bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Some weights of GPTNeoForCausalLM were not initialized from the model checkpoint at iamketan25/gpt-neo-1.3b-sft and are newly initialized: ['transformer.h.20.attn.attention.masked_bias', 'transformer.h.12.attn.attention.masked_bias', 'transformer.h.15.attn.attention.masked_bias', 'transformer.h.5.attn.attention.masked_bias', 'transformer.h.3.attn.attention.masked_bias', 'transformer.h.7.attn.attention.masked_bias', 'transformer.h.16.attn.attention.masked_bias', 'transformer.h.4.attn.attention.masked_bias', 'transformer.h.9.attn.attention.masked_bias', 'transformer.h.11.attn.attention.masked_bias', 'transformer.h.19.attn.attention.masked_bias', 'transformer.h.2.attn.attention.masked_bias', 'transformer.h.14.attn.attention.masked_bias', 'transformer.h.8.attn.attention.masked_bias', 'transformer.h.18.attn.attention.masked_bias', 'transformer.h.22.attn.attention.masked_bias', 'transformer.h.0.attn.attention.masked_bias', 'transformer.h.21.attn.attention.masked_bias', 'transformer.h.1.attn.attention.masked_bias', 'transformer.h.17.attn.attention.masked_bias', 'transformer.h.6.attn.attention.masked_bias', 'transformer.h.23.attn.attention.masked_bias', 'transformer.h.10.attn.attention.masked_bias', 'transformer.h.13.attn.attention.masked_bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Some weights of GPTNeoForCausalLM were not initialized from the model checkpoint at iamketan25/gpt-neo-1.3b-sft and are newly initialized: ['transformer.h.13.attn.attention.masked_bias', 'transformer.h.7.attn.attention.masked_bias', 'transformer.h.0.attn.attention.masked_bias', 'transformer.h.2.attn.attention.masked_bias', 'transformer.h.10.attn.attention.masked_bias', 'transformer.h.4.attn.attention.masked_bias', 'transformer.h.23.attn.attention.masked_bias', 'transformer.h.6.attn.attention.masked_bias', 'transformer.h.15.attn.attention.masked_bias', 'transformer.h.16.attn.attention.masked_bias', 'transformer.h.18.attn.attention.masked_bias', 'transformer.h.5.attn.attention.masked_bias', 'transformer.h.3.attn.attention.masked_bias', 'transformer.h.1.attn.attention.masked_bias', 'transformer.h.11.attn.attention.masked_bias', 'transformer.h.9.attn.attention.masked_bias', 'transformer.h.19.attn.attention.masked_bias', 'transformer.h.8.attn.attention.masked_bias', 'transformer.h.17.attn.attention.masked_bias', 'transformer.h.20.attn.attention.masked_bias', 'transformer.h.21.attn.attention.masked_bias', 'transformer.h.22.attn.attention.masked_bias', 'transformer.h.12.attn.attention.masked_bias', 'transformer.h.14.attn.attention.masked_bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Some weights of GPTNeoForCausalLM were not initialized from the model checkpoint at iamketan25/gpt-neo-1.3b-sft and are newly initialized: ['transformer.h.18.attn.attention.masked_bias', 'transformer.h.10.attn.attention.masked_bias', 'transformer.h.13.attn.attention.masked_bias', 'transformer.h.4.attn.attention.masked_bias', 'transformer.h.20.attn.attention.masked_bias', 'transformer.h.21.attn.attention.masked_bias', 'transformer.h.15.attn.attention.masked_bias', 'transformer.h.7.attn.attention.masked_bias', 'transformer.h.2.attn.attention.masked_bias', 'transformer.h.14.attn.attention.masked_bias', 'transformer.h.6.attn.attention.masked_bias', 'transformer.h.1.attn.attention.masked_bias', 'transformer.h.9.attn.attention.masked_bias', 'transformer.h.11.attn.attention.masked_bias', 'transformer.h.12.attn.attention.masked_bias', 'transformer.h.5.attn.attention.masked_bias', 'transformer.h.17.attn.attention.masked_bias', 'transformer.h.16.attn.attention.masked_bias', 'transformer.h.22.attn.attention.masked_bias', 'transformer.h.0.attn.attention.masked_bias', 'transformer.h.8.attn.attention.masked_bias', 'transformer.h.19.attn.attention.masked_bias', 'transformer.h.23.attn.attention.masked_bias', 'transformer.h.3.attn.attention.masked_bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--alpaca-instructions-dataset-57eb880093a82a29/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 744.40it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--alpaca-instructions-dataset-57eb880093a82a29/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 800.97it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--alpaca-instructions-dataset-57eb880093a82a29/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 802.12it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--alpaca-instructions-dataset-57eb880093a82a29/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 803.74it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--dolly-instructions-15k-4899fa89efa5cbf6/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1080.87it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--dolly-instructions-15k-4899fa89efa5cbf6/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1050.28it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--dolly-instructions-15k-4899fa89efa5cbf6/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1057.57it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--dolly-instructions-15k-4899fa89efa5cbf6/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1041.67it/s]
Downloading and preparing dataset parquet/iamketan25--gsm-general-qa-instructions to /home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--gsm-general-qa-instructions-013277d5a826dcd4/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...
Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]
Downloading data: 0%| | 0.00/8.56M [00:00<?, ?B/s][ADownloading data: 100%|██████████████████████████████████████████████████████████████| 8.56M/8.56M [00:00<00:00, 90.5MB/s]
Downloading data files: 50%|███████████████████████████████▌ | 1/2 [00:00<00:00, 3.94it/s]
Downloading data: 0%| | 0.00/967k [00:00<?, ?B/s][ADownloading data: 100%|████████████████████████████████████████████████████████████████| 967k/967k [00:00<00:00, 33.7MB/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 4.63it/s]
Downloading data files: 100%|███████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 4.51it/s]
Extracting data files: 0%| | 0/2 [00:00<?, ?it/s]
Extracting data files: 100%|██████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2247.15it/s]
Generating train split: 0 examples [00:00, ? examples/s]
Generating test split: 0 examples [00:00, ? examples/s]
Dataset parquet downloaded and prepared to /home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--gsm-general-qa-instructions-013277d5a826dcd4/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 969.45it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--gsm-general-qa-instructions-013277d5a826dcd4/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 622.16it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--gsm-general-qa-instructions-013277d5a826dcd4/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 895.74it/s]
Found cached dataset parquet (/home/ubuntu/.cache/huggingface/datasets/iamketan25___parquet/iamketan25--gsm-general-qa-instructions-013277d5a826dcd4/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 859.58it/s]
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Detected CUDA files, patching ldflags
Emitting ninja build file /home/ubuntu/.cache/torch_extensions/py39_cu117/fused_adam/build.ninja...
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
ninja: no work to do.
Loading extension module fused_adam...
Time to load fused_adam op: 0.5939269065856934 seconds
Loading extension module fused_adam...
Time to load fused_adam op: 0.6027216911315918 seconds
Loading extension module fused_adam...
Time to load fused_adam op: 0.6026906967163086 seconds
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Detected CUDA files, patching ldflags
Emitting ninja build file /home/ubuntu/.cache/torch_extensions/py39_cu117/fused_adam/build.ninja...
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
ninja: no work to do.
Loading extension module fused_adam...
Time to load fused_adam op: 1.034358024597168 seconds
[2023-04-19 16:57:05,669] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.9.0, git-hash=unknown, git-branch=unknown
[2023-04-19 16:57:05,675] [INFO] [comm.py:580:init_distributed] Distributed backend already initialized
[2023-04-19 16:57:05,871] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2023-04-19 16:57:05,873] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the client Optimizer
[2023-04-19 16:57:05,873] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2023-04-19 16:57:05,893] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = FusedAdam
[2023-04-19 16:57:05,893] [INFO] [utils.py:51:is_zero_supported_optimizer] Checking ZeRO support for optimizer=FusedAdam type=<class 'deepspeed.ops.adam.fused_adam.FusedAdam'>
[2023-04-19 16:57:05,894] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 3 optimizer
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Emitting ninja build file /home/ubuntu/.cache/torch_extensions/py39_cu117/utils/build.ninja...
Building extension module utils...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[2023-04-19 16:57:06,328] [INFO] [utils.py:785:see_memory_usage] Stage 3 initialize beginning
[2023-04-19 16:57:06,329] [INFO] [utils.py:786:see_memory_usage] MA 0.78 GB Max_MA 1.28 GB CA 3.41 GB Max_CA 3 GB
[2023-04-19 16:57:06,329] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.22 GB, percent = 18.9%
[2023-04-19 16:57:06,331] [INFO] [stage3.py:113:__init__] Reduce bucket size 500,000,000
[2023-04-19 16:57:06,331] [INFO] [stage3.py:114:__init__] Prefetch bucket size 30000000
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
ninja: no work to do.
Loading extension module utils...
Time to load utils op: 0.5918192863464355 seconds
Loading extension module utils...
Loading extension module utils...
Time to load utils op: 0.6023216247558594 seconds
Time to load utils op: 0.6022861003875732 seconds
Loading extension module utils...
Time to load utils op: 0.20152544975280762 seconds
[2023-04-19 16:57:06,875] [INFO] [utils.py:785:see_memory_usage] DeepSpeedZeRoOffload initialize [begin]
[2023-04-19 16:57:06,876] [INFO] [utils.py:786:see_memory_usage] MA 0.78 GB Max_MA 0.78 GB CA 3.41 GB Max_CA 3 GB
[2023-04-19 16:57:06,876] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.23 GB, percent = 18.9%
Parameter Offload: Total persistent parameters: 495616 in 170 params
[2023-04-19 16:57:07,289] [INFO] [utils.py:785:see_memory_usage] DeepSpeedZeRoOffload initialize [end]
[2023-04-19 16:57:07,289] [INFO] [utils.py:786:see_memory_usage] MA 0.76 GB Max_MA 0.78 GB CA 3.41 GB Max_CA 3 GB
[2023-04-19 16:57:07,290] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.23 GB, percent = 18.9%
[2023-04-19 16:57:07,630] [INFO] [utils.py:785:see_memory_usage] Before creating fp16 partitions
[2023-04-19 16:57:07,631] [INFO] [utils.py:786:see_memory_usage] MA 0.76 GB Max_MA 0.76 GB CA 3.41 GB Max_CA 3 GB
[2023-04-19 16:57:07,631] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.23 GB, percent = 18.9%
[2023-04-19 16:57:08,444] [INFO] [utils.py:785:see_memory_usage] After creating fp16 partitions: 1
[2023-04-19 16:57:08,444] [INFO] [utils.py:786:see_memory_usage] MA 0.76 GB Max_MA 0.76 GB CA 1.67 GB Max_CA 3 GB
[2023-04-19 16:57:08,444] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:08,786] [INFO] [utils.py:785:see_memory_usage] Before creating fp32 partitions
[2023-04-19 16:57:08,786] [INFO] [utils.py:786:see_memory_usage] MA 0.76 GB Max_MA 0.76 GB CA 1.67 GB Max_CA 2 GB
[2023-04-19 16:57:08,787] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:09,128] [INFO] [utils.py:785:see_memory_usage] After creating fp32 partitions
[2023-04-19 16:57:09,128] [INFO] [utils.py:786:see_memory_usage] MA 0.77 GB Max_MA 0.78 GB CA 1.67 GB Max_CA 2 GB
[2023-04-19 16:57:09,129] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:09,469] [INFO] [utils.py:785:see_memory_usage] Before initializing optimizer states
[2023-04-19 16:57:09,470] [INFO] [utils.py:786:see_memory_usage] MA 0.77 GB Max_MA 0.77 GB CA 1.67 GB Max_CA 2 GB
[2023-04-19 16:57:09,470] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:09,810] [INFO] [utils.py:785:see_memory_usage] After initializing optimizer states
[2023-04-19 16:57:09,811] [INFO] [utils.py:786:see_memory_usage] MA 0.8 GB Max_MA 0.81 GB CA 1.67 GB Max_CA 2 GB
[2023-04-19 16:57:09,811] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:09,812] [INFO] [stage3.py:366:_setup_for_real_optimizer] optimizer state initialized
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.00035953521728515625 seconds
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.00038123130798339844 seconds
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.0003180503845214844 seconds
[2023-04-19 16:57:10,317] [INFO] [utils.py:785:see_memory_usage] After initializing ZeRO optimizer
[2023-04-19 16:57:10,317] [INFO] [utils.py:786:see_memory_usage] MA 1.74 GB Max_MA 1.74 GB CA 2.61 GB Max_CA 3 GB
[2023-04-19 16:57:10,318] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 35.25 GB, percent = 18.9%
[2023-04-19 16:57:10,318] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2023-04-19 16:57:10,318] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2023-04-19 16:57:10,318] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <torch.optim.lr_scheduler.LambdaLR object at 0x7f66ae604310>
[2023-04-19 16:57:10,318] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.001], mom=[(0.9, 0.95)]
[2023-04-19 16:57:10,319] [INFO] [config.py:953:print] DeepSpeedEngine configuration:
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] amp_enabled .................. False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] amp_params ................... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] autotuning_config ............ {
"enabled": false,
"start_step": null,
"end_step": null,
"metric_path": null,
"arg_mappings": null,
"metric": "throughput",
"model_info": null,
"results_dir": "autotuning_results",
"exps_dir": "autotuning_exps",
"overwrite": true,
"fast": true,
"start_profile_step": 3,
"end_profile_step": 5,
"tuner_type": "gridsearch",
"tuner_early_stopping": 5,
"tuner_num_trials": 50,
"model_info_path": null,
"mp_size": 1,
"max_train_batch_size": null,
"min_train_batch_size": 1,
"max_train_micro_batch_size_per_gpu": 1.024000e+03,
"min_train_micro_batch_size_per_gpu": 1,
"num_tuning_micro_batch_sizes": 3
}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] bfloat16_enabled ............. False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] checkpoint_parallel_write_pipeline False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] checkpoint_tag_validation_enabled True
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] checkpoint_tag_validation_fail False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f66f708c490>
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] communication_data_type ...... None
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] curriculum_enabled_legacy .... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] curriculum_params_legacy ..... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] data_efficiency_enabled ...... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] dataloader_drop_last ......... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] disable_allgather ............ False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] dump_state ................... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 100, 'delayed_shift': 2, 'min_scale': 1}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_enabled ........... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_gas_boundary_resolution 1
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_layer_name ........ bert.encoder.layer
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_layer_num ......... 0
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_max_iter .......... 100
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_stability ......... 1e-06
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_tol ............... 0.01
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] eigenvalue_verbose ........... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] elasticity_enabled ........... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] flops_profiler_config ........ {
"enabled": false,
"profile_step": 1,
"module_depth": -1,
"top_modules": 1,
"detailed": true,
"output_file": null
}
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] fp16_auto_cast ............... False
[2023-04-19 16:57:10,320] [INFO] [config.py:957:print] fp16_enabled ................. True
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] fp16_master_weights_and_gradients False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] global_rank .................. 0
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] grad_accum_dtype ............. None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] gradient_accumulation_steps .. 2
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] gradient_clipping ............ 1.0
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] gradient_predivide_factor .... 1.0
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] initial_dynamic_scale ........ 65536
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] load_universal_checkpoint .... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] loss_scale ................... 0
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] memory_breakdown ............. False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] nebula_config ................ {
"enabled": false,
"persistent_storage_path": null,
"persistent_time_interval": 100,
"num_of_version_in_retention": 2,
"enable_nebula_load": true,
"load_path": null
}
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] optimizer_legacy_fusion ...... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] optimizer_name ............... None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] optimizer_params ............. None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] pld_enabled .................. False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] pld_params ................... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] prescale_gradients ........... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] scheduler_name ............... None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] scheduler_params ............. None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] sparse_attention ............. None
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] sparse_gradients_enabled ..... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] steps_per_print .............. 10
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] train_batch_size ............. 32
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] train_micro_batch_size_per_gpu 4
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] use_node_local_storage ....... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] wall_clock_breakdown ......... False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] world_size ................... 4
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] zero_allow_untested_optimizer False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] zero_config .................. stage=3 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500,000,000 allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=True load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100,000,000, max_in_cpu=1,000,000,000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline=False, pipeline_read=False, pipeline_write=False, fast_init=False) sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=30000000 param_persistence_threshold=10000 model_persistence_threshold=sys.maxsize max_live_parameters=30000000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False memory_efficient_linear=False
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] zero_enabled ................. True
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] zero_force_ds_cpu_optimizer .. True
[2023-04-19 16:57:10,321] [INFO] [config.py:957:print] zero_optimization_stage ...... 3
[2023-04-19 16:57:10,321] [INFO] [config.py:943:print_user_config] json = {
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 4,
"steps_per_print": 10,
"zero_optimization": {
"stage": 3,
"offload_param": {
"device": "none"
},
"offload_optimizer": {
"device": "none"
},
"stage3_param_persistence_threshold": 1.000000e+04,
"stage3_max_live_parameters": 3.000000e+07,
"stage3_prefetch_bucket_size": 3.000000e+07,
"memory_efficient_linear": false
},
"fp16": {
"enabled": true,
"loss_scale_window": 100
},
"gradient_clipping": 1.0,
"prescale_gradients": false,
"wall_clock_breakdown": false,
"hybrid_engine": {
"enabled": false,
"inference_tp_size": 1,
"release_inference_cache": false,
"pin_parameters": true,
"tp_gather_partition_size": 8
}
}
Using /home/ubuntu/.cache/torch_extensions/py39_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.0003190040588378906 seconds
***** Running training *****
***** Evaluating perplexity, Epoch 0/1 *****
ppl: 1.932552456855774
Beginning of Epoch 1/1, Total Micro Batches 5116
Invalidate trace cache @ step 0: expected module 16, but got module 0
[2023-04-19 17:04:45,205] [WARNING] [stage3.py:1787:step] 1 pytorch allocator cache flushes since last step. this happens when there is high memory pressure and is detrimental to performance. if this is happening frequently consider adjusting settings to reduce memory consumption. If you are unable to make the cache flushes go away consider adding get_accelerator().empty_cache() calls in your training loop to ensure that all ranks flush their caches at the same time
[2023-04-19 17:05:06,421] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=0, lr=[0.000999962292024615], mom=[(0.9, 0.95)]
[2023-04-19 17:05:06,421] [INFO] [timer.py:199:stop] epoch=0/micro_step=20/global_step=10, RunningAvgSamplesPerSec=12.07828969080794, CurrSamplesPerSec=12.495106931233762, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:05:32,168] [INFO] [logging.py:96:log_dist] [Rank 0] step=20, skipped=0, lr=[0.0009998491737860256], mom=[(0.9, 0.95)]
[2023-04-19 17:05:32,169] [INFO] [timer.py:199:stop] epoch=0/micro_step=40/global_step=20, RunningAvgSamplesPerSec=12.27707734265837, CurrSamplesPerSec=12.316409530577367, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:05:58,637] [INFO] [logging.py:96:log_dist] [Rank 0] step=30, skipped=0, lr=[0.0009996606623460709], mom=[(0.9, 0.95)]
[2023-04-19 17:05:58,637] [INFO] [timer.py:199:stop] epoch=0/micro_step=60/global_step=30, RunningAvgSamplesPerSec=12.213891713093837, CurrSamplesPerSec=12.335717709296935, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:06:25,208] [INFO] [logging.py:96:log_dist] [Rank 0] step=40, skipped=0, lr=[0.0009993967861382895], mom=[(0.9, 0.95)]
[2023-04-19 17:06:25,208] [INFO] [timer.py:199:stop] epoch=0/micro_step=80/global_step=40, RunningAvgSamplesPerSec=12.171658146585271, CurrSamplesPerSec=12.415960783326993, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:06:50,948] [INFO] [logging.py:96:log_dist] [Rank 0] step=50, skipped=0, lr=[0.0009990575849636322], mom=[(0.9, 0.95)]
[2023-04-19 17:06:50,949] [INFO] [timer.py:199:stop] epoch=0/micro_step=100/global_step=50, RunningAvgSamplesPerSec=12.227460835941864, CurrSamplesPerSec=12.498281061505862, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:07:17,048] [INFO] [logging.py:96:log_dist] [Rank 0] step=60, skipped=0, lr=[0.0009986431099844567], mom=[(0.9, 0.95)]
[2023-04-19 17:07:17,049] [INFO] [timer.py:199:stop] epoch=0/micro_step=120/global_step=60, RunningAvgSamplesPerSec=12.235269962686647, CurrSamplesPerSec=12.427871199814515, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:07:42,760] [INFO] [logging.py:96:log_dist] [Rank 0] step=70, skipped=0, lr=[0.0009981534237168124], mom=[(0.9, 0.95)]
[2023-04-19 17:07:42,760] [INFO] [timer.py:199:stop] epoch=0/micro_step=140/global_step=70, RunningAvgSamplesPerSec=12.26760719734709, CurrSamplesPerSec=12.447521475862185, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:08:09,216] [INFO] [logging.py:96:log_dist] [Rank 0] step=80, skipped=0, lr=[0.0009975886000210103], mom=[(0.9, 0.95)]
[2023-04-19 17:08:09,216] [INFO] [timer.py:199:stop] epoch=0/micro_step=160/global_step=80, RunningAvgSamplesPerSec=12.246875617612654, CurrSamplesPerSec=12.463447132852547, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:08:34,878] [INFO] [logging.py:96:log_dist] [Rank 0] step=90, skipped=0, lr=[0.0009969487240904821], mom=[(0.9, 0.95)]
[2023-04-19 17:08:34,878] [INFO] [timer.py:199:stop] epoch=0/micro_step=180/global_step=90, RunningAvgSamplesPerSec=12.273182191155067, CurrSamplesPerSec=12.479842927239387, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:09:01,201] [INFO] [logging.py:96:log_dist] [Rank 0] step=100, skipped=0, lr=[0.0009962338924389318], mom=[(0.9, 0.95)]
[2023-04-19 17:09:01,202] [INFO] [timer.py:199:stop] epoch=0/micro_step=200/global_step=100, RunningAvgSamplesPerSec=12.262435671957197, CurrSamplesPerSec=12.444532300839375, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:09:03,712] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:09:06,241] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:09:27,458] [INFO] [logging.py:96:log_dist] [Rank 0] step=110, skipped=2, lr=[0.0009956081310737383], mom=[(0.9, 0.95)]
[2023-04-19 17:09:27,458] [INFO] [timer.py:199:stop] epoch=0/micro_step=220/global_step=110, RunningAvgSamplesPerSec=12.256601643093727, CurrSamplesPerSec=10.073982804736758, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:09:53,231] [INFO] [logging.py:96:log_dist] [Rank 0] step=120, skipped=2, lr=[0.0009947586584163801], mom=[(0.9, 0.95)]
[2023-04-19 17:09:53,232] [INFO] [timer.py:199:stop] epoch=0/micro_step=240/global_step=120, RunningAvgSamplesPerSec=12.270975908562303, CurrSamplesPerSec=12.399814784909182, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:10:19,854] [INFO] [logging.py:96:log_dist] [Rank 0] step=130, skipped=2, lr=[0.0009938345603697695], mom=[(0.9, 0.95)]
[2023-04-19 17:10:19,854] [INFO] [timer.py:199:stop] epoch=0/micro_step=260/global_step=130, RunningAvgSamplesPerSec=12.25194301856043, CurrSamplesPerSec=12.366203557310797, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:10:45,602] [INFO] [logging.py:96:log_dist] [Rank 0] step=140, skipped=2, lr=[0.0009928359763173725], mom=[(0.9, 0.95)]
[2023-04-19 17:10:45,603] [INFO] [timer.py:199:stop] epoch=0/micro_step=280/global_step=140, RunningAvgSamplesPerSec=12.26540750325886, CurrSamplesPerSec=12.465680069991771, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:11:12,054] [INFO] [logging.py:96:log_dist] [Rank 0] step=150, skipped=2, lr=[0.0009917630568775197], mom=[(0.9, 0.95)]
[2023-04-19 17:11:12,055] [INFO] [timer.py:199:stop] epoch=0/micro_step=300/global_step=150, RunningAvgSamplesPerSec=12.254730873875417, CurrSamplesPerSec=12.451094211070863, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:11:37,804] [INFO] [logging.py:96:log_dist] [Rank 0] step=160, skipped=2, lr=[0.0009906159638806912], mom=[(0.9, 0.95)]
[2023-04-19 17:11:37,805] [INFO] [timer.py:199:stop] epoch=0/micro_step=320/global_step=160, RunningAvgSamplesPerSec=12.266273586942694, CurrSamplesPerSec=12.372864453261226, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:12:04,310] [INFO] [logging.py:96:log_dist] [Rank 0] step=170, skipped=2, lr=[0.0009893948703451048], mom=[(0.9, 0.95)]
[2023-04-19 17:12:04,311] [INFO] [timer.py:199:stop] epoch=0/micro_step=340/global_step=170, RunningAvgSamplesPerSec=12.255316195957107, CurrSamplesPerSec=12.35051278684349, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:12:30,058] [INFO] [logging.py:96:log_dist] [Rank 0] step=180, skipped=2, lr=[0.00098809996045062], mom=[(0.9, 0.95)]
[2023-04-19 17:12:30,058] [INFO] [timer.py:199:stop] epoch=0/micro_step=360/global_step=180, RunningAvgSamplesPerSec=12.265586794678816, CurrSamplesPerSec=12.53894458266291, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:12:55,974] [INFO] [logging.py:96:log_dist] [Rank 0] step=190, skipped=2, lr=[0.0009867314295109592], mom=[(0.9, 0.95)]
[2023-04-19 17:12:55,974] [INFO] [timer.py:199:stop] epoch=0/micro_step=380/global_step=190, RunningAvgSamplesPerSec=12.270574293164143, CurrSamplesPerSec=12.805881607610917, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:13:21,596] [INFO] [logging.py:96:log_dist] [Rank 0] step=200, skipped=2, lr=[0.0009852894839442454], mom=[(0.9, 0.95)]
[2023-04-19 17:13:21,597] [INFO] [timer.py:199:stop] epoch=0/micro_step=400/global_step=200, RunningAvgSamplesPerSec=12.28206325598975, CurrSamplesPerSec=10.304444444615054, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:13:29,036] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:13:31,505] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:13:46,471] [INFO] [logging.py:96:log_dist] [Rank 0] step=210, skipped=4, lr=[0.0009840832147423797], mom=[(0.9, 0.95)]
[2023-04-19 17:13:46,471] [INFO] [timer.py:199:stop] epoch=0/micro_step=420/global_step=210, RunningAvgSamplesPerSec=12.309450362425165, CurrSamplesPerSec=12.82604532079847, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:14:12,095] [INFO] [logging.py:96:log_dist] [Rank 0] step=220, skipped=4, lr=[0.0009825096783456148], mom=[(0.9, 0.95)]
[2023-04-19 17:14:12,095] [INFO] [timer.py:199:stop] epoch=0/micro_step=440/global_step=220, RunningAvgSamplesPerSec=12.318099158821909, CurrSamplesPerSec=12.881070542377875, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:14:36,998] [INFO] [logging.py:96:log_dist] [Rank 0] step=230, skipped=4, lr=[0.000980863364096554], mom=[(0.9, 0.95)]
[2023-04-19 17:14:36,999] [INFO] [timer.py:199:stop] epoch=0/micro_step=460/global_step=230, RunningAvgSamplesPerSec=12.341027356371558, CurrSamplesPerSec=12.877603892322144, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:15:02,518] [INFO] [logging.py:96:log_dist] [Rank 0] step=240, skipped=4, lr=[0.0009791445203119053], mom=[(0.9, 0.95)]
[2023-04-19 17:15:02,518] [INFO] [timer.py:199:stop] epoch=0/micro_step=480/global_step=240, RunningAvgSamplesPerSec=12.349763302828249, CurrSamplesPerSec=12.845641906787987, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:15:27,392] [INFO] [logging.py:96:log_dist] [Rank 0] step=250, skipped=4, lr=[0.0009773534062481454], mom=[(0.9, 0.95)]
[2023-04-19 17:15:27,392] [INFO] [timer.py:199:stop] epoch=0/micro_step=500/global_step=250, RunningAvgSamplesPerSec=12.370237821031711, CurrSamplesPerSec=12.822156205013146, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:15:52,996] [INFO] [logging.py:96:log_dist] [Rank 0] step=260, skipped=4, lr=[0.0009754902920624147], mom=[(0.9, 0.95)]
[2023-04-19 17:15:52,996] [INFO] [timer.py:199:stop] epoch=0/micro_step=520/global_step=260, RunningAvgSamplesPerSec=12.375631075615024, CurrSamplesPerSec=12.870813186986009, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:16:17,856] [INFO] [logging.py:96:log_dist] [Rank 0] step=270, skipped=4, lr=[0.0009735554587717682], mom=[(0.9, 0.95)]
[2023-04-19 17:16:17,857] [INFO] [timer.py:199:stop] epoch=0/micro_step=540/global_step=270, RunningAvgSamplesPerSec=12.393919730920452, CurrSamplesPerSec=12.862547808911936, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:16:43,461] [INFO] [logging.py:96:log_dist] [Rank 0] step=280, skipped=4, lr=[0.0009715491982107905], mom=[(0.9, 0.95)]
[2023-04-19 17:16:43,461] [INFO] [timer.py:199:stop] epoch=0/micro_step=560/global_step=280, RunningAvgSamplesPerSec=12.398073557379359, CurrSamplesPerSec=12.863134582943513, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:17:08,936] [INFO] [logging.py:96:log_dist] [Rank 0] step=290, skipped=4, lr=[0.0009694718129875771], mom=[(0.9, 0.95)]
[2023-04-19 17:17:08,936] [INFO] [timer.py:199:stop] epoch=0/micro_step=580/global_step=290, RunningAvgSamplesPerSec=12.404108615541837, CurrSamplesPerSec=12.860413192082941, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:17:33,853] [INFO] [logging.py:96:log_dist] [Rank 0] step=300, skipped=4, lr=[0.0009673236164380912], mom=[(0.9, 0.95)]
[2023-04-19 17:17:33,853] [INFO] [timer.py:199:stop] epoch=0/micro_step=600/global_step=300, RunningAvgSamplesPerSec=12.418762449265945, CurrSamplesPerSec=12.851047499700309, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:17:46,275] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:17:48,741] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:17:59,496] [INFO] [logging.py:96:log_dist] [Rank 0] step=310, skipped=6, lr=[0.0009655542924250932], mom=[(0.9, 0.95)]
[2023-04-19 17:17:59,496] [INFO] [timer.py:199:stop] epoch=0/micro_step=620/global_step=310, RunningAvgSamplesPerSec=12.421115391503212, CurrSamplesPerSec=12.816023451561925, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:18:24,477] [INFO] [logging.py:96:log_dist] [Rank 0] step=320, skipped=6, lr=[0.0009632794591562836], mom=[(0.9, 0.95)]
[2023-04-19 17:18:24,478] [INFO] [timer.py:199:stop] epoch=0/micro_step=640/global_step=320, RunningAvgSamplesPerSec=12.433364398393774, CurrSamplesPerSec=12.829373894544624, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:18:50,281] [INFO] [logging.py:96:log_dist] [Rank 0] step=330, skipped=6, lr=[0.000960934748565705], mom=[(0.9, 0.95)]
[2023-04-19 17:18:50,281] [INFO] [timer.py:199:stop] epoch=0/micro_step=660/global_step=330, RunningAvgSamplesPerSec=12.4327725639688, CurrSamplesPerSec=12.797726234057041, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:19:15,444] [INFO] [logging.py:96:log_dist] [Rank 0] step=340, skipped=6, lr=[0.0009585205143105142], mom=[(0.9, 0.95)]
[2023-04-19 17:19:15,444] [INFO] [timer.py:199:stop] epoch=0/micro_step=680/global_step=340, RunningAvgSamplesPerSec=12.441374838659565, CurrSamplesPerSec=12.701174220816803, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:19:41,502] [INFO] [logging.py:96:log_dist] [Rank 0] step=350, skipped=6, lr=[0.0009560371205342551], mom=[(0.9, 0.95)]
[2023-04-19 17:19:41,502] [INFO] [timer.py:199:stop] epoch=0/micro_step=700/global_step=350, RunningAvgSamplesPerSec=12.437047446225632, CurrSamplesPerSec=12.582267551983822, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:20:07,018] [INFO] [logging.py:96:log_dist] [Rank 0] step=360, skipped=6, lr=[0.0009534849418119328], mom=[(0.9, 0.95)]
[2023-04-19 17:20:07,019] [INFO] [timer.py:199:stop] epoch=0/micro_step=720/global_step=360, RunningAvgSamplesPerSec=12.440282802443646, CurrSamplesPerSec=12.476507663951448, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:20:33,388] [INFO] [logging.py:96:log_dist] [Rank 0] step=370, skipped=6, lr=[0.0009508643630935172], mom=[(0.9, 0.95)]
[2023-04-19 17:20:33,388] [INFO] [timer.py:199:stop] epoch=0/micro_step=740/global_step=370, RunningAvgSamplesPerSec=12.43213407083404, CurrSamplesPerSec=12.501919098490374, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:20:59,805] [INFO] [logging.py:96:log_dist] [Rank 0] step=380, skipped=6, lr=[0.0009481757796458796], mom=[(0.9, 0.95)]
[2023-04-19 17:20:59,805] [INFO] [timer.py:199:stop] epoch=0/micro_step=760/global_step=380, RunningAvgSamplesPerSec=12.423823090381852, CurrSamplesPerSec=12.381460225246393, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:21:25,673] [INFO] [logging.py:96:log_dist] [Rank 0] step=390, skipped=6, lr=[0.0009454195969931738], mom=[(0.9, 0.95)]
[2023-04-19 17:21:25,673] [INFO] [timer.py:199:stop] epoch=0/micro_step=780/global_step=390, RunningAvgSamplesPerSec=12.422769578096686, CurrSamplesPerSec=12.376197022211878, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:21:52,290] [INFO] [logging.py:96:log_dist] [Rank 0] step=400, skipped=6, lr=[0.0009425962308556705], mom=[(0.9, 0.95)]
[2023-04-19 17:21:52,290] [INFO] [timer.py:199:stop] epoch=0/micro_step=800/global_step=400, RunningAvgSamplesPerSec=12.412703792380244, CurrSamplesPerSec=12.393729084304733, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:22:10,308] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:22:12,846] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:22:18,036] [INFO] [logging.py:96:log_dist] [Rank 0] step=410, skipped=8, lr=[0.0009402894516714383], mom=[(0.9, 0.95)]
[2023-04-19 17:22:18,036] [INFO] [timer.py:199:stop] epoch=0/micro_step=820/global_step=410, RunningAvgSamplesPerSec=12.41341628187407, CurrSamplesPerSec=12.390996757255785, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:22:44,528] [INFO] [logging.py:96:log_dist] [Rank 0] step=420, skipped=8, lr=[0.0009373462351812672], mom=[(0.9, 0.95)]
[2023-04-19 17:22:44,528] [INFO] [timer.py:199:stop] epoch=0/micro_step=840/global_step=420, RunningAvgSamplesPerSec=12.405510418676558, CurrSamplesPerSec=12.443687744002439, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:23:10,274] [INFO] [logging.py:96:log_dist] [Rank 0] step=430, skipped=8, lr=[0.0009343370529268123], mom=[(0.9, 0.95)]
[2023-04-19 17:23:10,274] [INFO] [timer.py:199:stop] epoch=0/micro_step=860/global_step=430, RunningAvgSamplesPerSec=12.406355781250136, CurrSamplesPerSec=12.453858887280555, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:23:36,828] [INFO] [logging.py:96:log_dist] [Rank 0] step=440, skipped=8, lr=[0.000931262358788755], mom=[(0.9, 0.95)]
[2023-04-19 17:23:36,829] [INFO] [timer.py:199:stop] epoch=0/micro_step=880/global_step=440, RunningAvgSamplesPerSec=12.398296176552364, CurrSamplesPerSec=12.41375136191017, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:24:03,063] [INFO] [logging.py:96:log_dist] [Rank 0] step=450, skipped=8, lr=[0.000928122616529059], mom=[(0.9, 0.95)]
[2023-04-19 17:24:03,064] [INFO] [timer.py:199:stop] epoch=0/micro_step=900/global_step=450, RunningAvgSamplesPerSec=12.394027658246998, CurrSamplesPerSec=10.898765305383344, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:24:29,250] [INFO] [logging.py:96:log_dist] [Rank 0] step=460, skipped=8, lr=[0.0009249182997210198], mom=[(0.9, 0.95)]
[2023-04-19 17:24:29,250] [INFO] [timer.py:199:stop] epoch=0/micro_step=920/global_step=460, RunningAvgSamplesPerSec=12.390452563746633, CurrSamplesPerSec=12.425945131237496, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:24:55,622] [INFO] [logging.py:96:log_dist] [Rank 0] step=470, skipped=8, lr=[0.0009216498916778344], mom=[(0.9, 0.95)]
[2023-04-19 17:24:55,623] [INFO] [timer.py:199:stop] epoch=0/micro_step=940/global_step=470, RunningAvgSamplesPerSec=12.38512612561435, CurrSamplesPerSec=12.463959862063918, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:25:21,314] [INFO] [logging.py:96:log_dist] [Rank 0] step=480, skipped=8, lr=[0.0009183178853797029], mom=[(0.9, 0.95)]
[2023-04-19 17:25:21,314] [INFO] [timer.py:199:stop] epoch=0/micro_step=960/global_step=480, RunningAvgSamplesPerSec=12.386858313326691, CurrSamplesPerSec=12.438629725788537, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:25:47,838] [INFO] [logging.py:96:log_dist] [Rank 0] step=490, skipped=8, lr=[0.0009149227833994717], mom=[(0.9, 0.95)]
[2023-04-19 17:25:47,838] [INFO] [timer.py:199:stop] epoch=0/micro_step=980/global_step=490, RunningAvgSamplesPerSec=12.38034147155676, CurrSamplesPerSec=12.433708277773485, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:26:13,689] [INFO] [logging.py:96:log_dist] [Rank 0] step=500, skipped=8, lr=[0.000911465097826828], mom=[(0.9, 0.95)]
[2023-04-19 17:26:13,690] [INFO] [timer.py:199:stop] epoch=0/micro_step=1000/global_step=500, RunningAvgSamplesPerSec=12.380554445613633, CurrSamplesPerSec=12.456449068622906, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:26:37,501] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:26:40,028] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:26:40,028] [INFO] [logging.py:96:log_dist] [Rank 0] step=510, skipped=10, lr=[0.0009086542393346895], mom=[(0.9, 0.95)]
[2023-04-19 17:26:40,029] [INFO] [timer.py:199:stop] epoch=0/micro_step=1020/global_step=510, RunningAvgSamplesPerSec=12.376163880112658, CurrSamplesPerSec=12.67544033782103, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:27:05,740] [INFO] [logging.py:96:log_dist] [Rank 0] step=520, skipped=10, lr=[0.0009050852238427441], mom=[(0.9, 0.95)]
[2023-04-19 17:27:05,741] [INFO] [timer.py:199:stop] epoch=0/micro_step=1040/global_step=520, RunningAvgSamplesPerSec=12.377737660987972, CurrSamplesPerSec=12.420433708306238, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:27:32,180] [INFO] [logging.py:96:log_dist] [Rank 0] step=530, skipped=10, lr=[0.0009014551085762004], mom=[(0.9, 0.95)]
[2023-04-19 17:27:32,180] [INFO] [timer.py:199:stop] epoch=0/micro_step=1060/global_step=530, RunningAvgSamplesPerSec=12.372661889023702, CurrSamplesPerSec=12.377309799385882, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:27:58,847] [INFO] [logging.py:96:log_dist] [Rank 0] step=540, skipped=10, lr=[0.0008977644410722474], mom=[(0.9, 0.95)]
[2023-04-19 17:27:58,848] [INFO] [timer.py:199:stop] epoch=0/micro_step=1080/global_step=540, RunningAvgSamplesPerSec=12.3657484083089, CurrSamplesPerSec=10.83456878461236, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:28:24,615] [INFO] [logging.py:96:log_dist] [Rank 0] step=550, skipped=10, lr=[0.0008940137780012825], mom=[(0.9, 0.95)]
[2023-04-19 17:28:24,615] [INFO] [timer.py:199:stop] epoch=0/micro_step=1100/global_step=550, RunningAvgSamplesPerSec=12.366938514326245, CurrSamplesPerSec=12.479740812725497, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:28:50,954] [INFO] [logging.py:96:log_dist] [Rank 0] step=560, skipped=10, lr=[0.0008902036850829485], mom=[(0.9, 0.95)]
[2023-04-19 17:28:50,954] [INFO] [timer.py:199:stop] epoch=0/micro_step=1120/global_step=560, RunningAvgSamplesPerSec=12.363198818138457, CurrSamplesPerSec=12.443068244459347, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:29:16,787] [INFO] [logging.py:96:log_dist] [Rank 0] step=570, skipped=10, lr=[0.0008863347370008057], mom=[(0.9, 0.95)]
[2023-04-19 17:29:16,787] [INFO] [timer.py:199:stop] epoch=0/micro_step=1140/global_step=570, RunningAvgSamplesPerSec=12.3638415350952, CurrSamplesPerSec=12.362678227713483, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:29:43,335] [INFO] [logging.py:96:log_dist] [Rank 0] step=580, skipped=10, lr=[0.0008824075173156499], mom=[(0.9, 0.95)]
[2023-04-19 17:29:43,336] [INFO] [timer.py:199:stop] epoch=0/micro_step=1160/global_step=580, RunningAvgSamplesPerSec=12.35855420493839, CurrSamplesPerSec=12.404735802011816, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:30:09,222] [INFO] [logging.py:96:log_dist] [Rank 0] step=590, skipped=10, lr=[0.0008784226183774943], mom=[(0.9, 0.95)]
[2023-04-19 17:30:09,222] [INFO] [timer.py:199:stop] epoch=0/micro_step=1180/global_step=590, RunningAvgSamplesPerSec=12.358818701228529, CurrSamplesPerSec=12.365673775252885, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:30:35,854] [INFO] [logging.py:96:log_dist] [Rank 0] step=600, skipped=10, lr=[0.000874380641236223], mom=[(0.9, 0.95)]
[2023-04-19 17:30:35,854] [INFO] [timer.py:199:stop] epoch=0/micro_step=1200/global_step=600, RunningAvgSamplesPerSec=12.353132909214159, CurrSamplesPerSec=12.35099239814929, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:31:01,682] [INFO] [logging.py:96:log_dist] [Rank 0] step=610, skipped=10, lr=[0.0008702821955509344], mom=[(0.9, 0.95)]
[2023-04-19 17:31:01,682] [INFO] [timer.py:199:stop] epoch=0/micro_step=1220/global_step=610, RunningAvgSamplesPerSec=12.353940832433471, CurrSamplesPerSec=12.39328276766209, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:31:04,560] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:31:07,486] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:31:28,208] [INFO] [logging.py:96:log_dist] [Rank 0] step=620, skipped=12, lr=[0.0008669631967817167], mom=[(0.9, 0.95)]
[2023-04-19 17:31:28,208] [INFO] [timer.py:199:stop] epoch=0/micro_step=1240/global_step=620, RunningAvgSamplesPerSec=12.349334304280147, CurrSamplesPerSec=12.38552657235039, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:31:54,781] [INFO] [logging.py:96:log_dist] [Rank 0] step=630, skipped=12, lr=[0.0008627646711857188], mom=[(0.9, 0.95)]
[2023-04-19 17:31:54,782] [INFO] [timer.py:199:stop] epoch=0/micro_step=1260/global_step=630, RunningAvgSamplesPerSec=12.344519090997533, CurrSamplesPerSec=10.799963854672287, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:32:20,670] [INFO] [logging.py:96:log_dist] [Rank 0] step=640, skipped=12, lr=[0.0008585114291045544], mom=[(0.9, 0.95)]
[2023-04-19 17:32:20,671] [INFO] [timer.py:199:stop] epoch=0/micro_step=1280/global_step=640, RunningAvgSamplesPerSec=12.344965329862202, CurrSamplesPerSec=12.400174503397956, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:32:47,133] [INFO] [logging.py:96:log_dist] [Rank 0] step=650, skipped=12, lr=[0.0008542041120628143], mom=[(0.9, 0.95)]
[2023-04-19 17:32:47,133] [INFO] [timer.py:199:stop] epoch=0/micro_step=1300/global_step=650, RunningAvgSamplesPerSec=12.341185303447821, CurrSamplesPerSec=12.410061177588837, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:33:13,000] [INFO] [logging.py:96:log_dist] [Rank 0] step=660, skipped=12, lr=[0.0008498433697413186], mom=[(0.9, 0.95)]
[2023-04-19 17:33:13,001] [INFO] [timer.py:199:stop] epoch=0/micro_step=1320/global_step=660, RunningAvgSamplesPerSec=12.341826339333801, CurrSamplesPerSec=12.325113758079137, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:33:39,578] [INFO] [logging.py:96:log_dist] [Rank 0] step=670, skipped=12, lr=[0.0008454298598791235], mom=[(0.9, 0.95)]
[2023-04-19 17:33:39,579] [INFO] [timer.py:199:stop] epoch=0/micro_step=1340/global_step=670, RunningAvgSamplesPerSec=12.337384792748615, CurrSamplesPerSec=12.432642918761928, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:34:05,425] [INFO] [logging.py:96:log_dist] [Rank 0] step=680, skipped=12, lr=[0.000840964248174314], mom=[(0.9, 0.95)]
[2023-04-19 17:34:05,426] [INFO] [timer.py:199:stop] epoch=0/micro_step=1360/global_step=680, RunningAvgSamplesPerSec=12.338203936574846, CurrSamplesPerSec=12.39753896095559, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:34:32,004] [INFO] [logging.py:96:log_dist] [Rank 0] step=690, skipped=12, lr=[0.0008364472081835954], mom=[(0.9, 0.95)]
[2023-04-19 17:34:32,004] [INFO] [timer.py:199:stop] epoch=0/micro_step=1380/global_step=690, RunningAvgSamplesPerSec=12.333943151295635, CurrSamplesPerSec=12.388178734300265, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:34:58,287] [INFO] [logging.py:96:log_dist] [Rank 0] step=700, skipped=12, lr=[0.0008318794212206986], mom=[(0.9, 0.95)]
[2023-04-19 17:34:58,288] [INFO] [timer.py:199:stop] epoch=0/micro_step=1400/global_step=700, RunningAvgSamplesPerSec=12.331818651748383, CurrSamplesPerSec=10.815059116797121, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:35:24,531] [INFO] [logging.py:96:log_dist] [Rank 0] step=710, skipped=12, lr=[0.0008272615762536171], mom=[(0.9, 0.95)]
[2023-04-19 17:35:24,532] [INFO] [timer.py:199:stop] epoch=0/micro_step=1420/global_step=710, RunningAvgSamplesPerSec=12.330020191929695, CurrSamplesPerSec=12.390247522970165, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:35:32,232] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:35:34,771] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:35:50,892] [INFO] [logging.py:96:log_dist] [Rank 0] step=720, skipped=14, lr=[0.0008235317263262469], mom=[(0.9, 0.95)]
[2023-04-19 17:35:50,892] [INFO] [timer.py:199:stop] epoch=0/micro_step=1440/global_step=720, RunningAvgSamplesPerSec=12.327496611969542, CurrSamplesPerSec=12.364812549050821, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:36:16,725] [INFO] [logging.py:96:log_dist] [Rank 0] step=730, skipped=14, lr=[0.0008188255371846346], mom=[(0.9, 0.95)]
[2023-04-19 17:36:16,725] [INFO] [timer.py:199:stop] epoch=0/micro_step=1460/global_step=730, RunningAvgSamplesPerSec=12.328485193644248, CurrSamplesPerSec=12.39404266958273, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:36:43,182] [INFO] [logging.py:96:log_dist] [Rank 0] step=740, skipped=14, lr=[0.0008140712589809891], mom=[(0.9, 0.95)]
[2023-04-19 17:36:43,182] [INFO] [timer.py:199:stop] epoch=0/micro_step=1480/global_step=740, RunningAvgSamplesPerSec=12.32543440337834, CurrSamplesPerSec=12.378232129443344, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:37:09,039] [INFO] [logging.py:96:log_dist] [Rank 0] step=750, skipped=14, lr=[0.0008092696088121323], mom=[(0.9, 0.95)]
[2023-04-19 17:37:09,039] [INFO] [timer.py:199:stop] epoch=0/micro_step=1500/global_step=750, RunningAvgSamplesPerSec=12.326270629881153, CurrSamplesPerSec=12.410741659317063, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:37:35,654] [INFO] [logging.py:96:log_dist] [Rank 0] step=760, skipped=14, lr=[0.0008044213109200901], mom=[(0.9, 0.95)]
[2023-04-19 17:37:35,655] [INFO] [timer.py:199:stop] epoch=0/micro_step=1520/global_step=760, RunningAvgSamplesPerSec=12.322338561705967, CurrSamplesPerSec=12.403199713747565, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:38:01,485] [INFO] [logging.py:96:log_dist] [Rank 0] step=770, skipped=14, lr=[0.0007995270965828522], mom=[(0.9, 0.95)]
[2023-04-19 17:38:01,486] [INFO] [timer.py:199:stop] epoch=0/micro_step=1540/global_step=770, RunningAvgSamplesPerSec=12.32335401862153, CurrSamplesPerSec=12.418311166214071, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:38:27,898] [INFO] [logging.py:96:log_dist] [Rank 0] step=780, skipped=14, lr=[0.0007945877040040741], mom=[(0.9, 0.95)]
[2023-04-19 17:38:27,899] [INFO] [timer.py:199:stop] epoch=0/micro_step=1560/global_step=780, RunningAvgSamplesPerSec=12.320793923911, CurrSamplesPerSec=12.407547599586076, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:38:54,088] [INFO] [logging.py:96:log_dist] [Rank 0] step=790, skipped=14, lr=[0.0007896038782017308], mom=[(0.9, 0.95)]
[2023-04-19 17:38:54,089] [INFO] [timer.py:199:stop] epoch=0/micro_step=1580/global_step=790, RunningAvgSamplesPerSec=12.319644966599517, CurrSamplesPerSec=12.290209522225812, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:39:19,990] [INFO] [logging.py:96:log_dist] [Rank 0] step=800, skipped=14, lr=[0.0007845763708957448], mom=[(0.9, 0.95)]
[2023-04-19 17:39:19,990] [INFO] [timer.py:199:stop] epoch=0/micro_step=1600/global_step=800, RunningAvgSamplesPerSec=12.320236636211249, CurrSamplesPerSec=12.744466835576597, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:39:45,824] [INFO] [logging.py:96:log_dist] [Rank 0] step=810, skipped=14, lr=[0.0007795059403946033], mom=[(0.9, 0.95)]
[2023-04-19 17:39:45,825] [INFO] [timer.py:199:stop] epoch=0/micro_step=1620/global_step=810, RunningAvgSamplesPerSec=12.321208267862733, CurrSamplesPerSec=12.790884182215338, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:39:58,273] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:40:00,745] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:40:10,738] [INFO] [logging.py:96:log_dist] [Rank 0] step=820, skipped=16, lr=[0.0007754192050125431], mom=[(0.9, 0.95)]
[2023-04-19 17:40:10,738] [INFO] [timer.py:199:stop] epoch=0/micro_step=1640/global_step=820, RunningAvgSamplesPerSec=12.327498662124329, CurrSamplesPerSec=12.849750726700075, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:40:36,307] [INFO] [logging.py:96:log_dist] [Rank 0] step=830, skipped=16, lr=[0.000770273444289497], mom=[(0.9, 0.95)]
[2023-04-19 17:40:36,307] [INFO] [timer.py:199:stop] epoch=0/micro_step=1660/global_step=830, RunningAvgSamplesPerSec=12.329883167590443, CurrSamplesPerSec=12.826796704158907, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:41:01,233] [INFO] [logging.py:96:log_dist] [Rank 0] step=840, skipped=16, lr=[0.0007650869177089128], mom=[(0.9, 0.95)]
[2023-04-19 17:41:01,234] [INFO] [timer.py:199:stop] epoch=0/micro_step=1680/global_step=840, RunningAvgSamplesPerSec=12.335855108865013, CurrSamplesPerSec=12.83786436378276, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:41:26,908] [INFO] [logging.py:96:log_dist] [Rank 0] step=850, skipped=16, lr=[0.0007598604075644574], mom=[(0.9, 0.95)]
[2023-04-19 17:41:26,909] [INFO] [timer.py:199:stop] epoch=0/micro_step=1700/global_step=850, RunningAvgSamplesPerSec=12.337496481370808, CurrSamplesPerSec=12.849296794964276, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:41:51,839] [INFO] [logging.py:96:log_dist] [Rank 0] step=860, skipped=16, lr=[0.0007545947021805939], mom=[(0.9, 0.95)]
[2023-04-19 17:41:51,839] [INFO] [timer.py:199:stop] epoch=0/micro_step=1720/global_step=860, RunningAvgSamplesPerSec=12.343223968422315, CurrSamplesPerSec=12.837561070790468, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:42:17,574] [INFO] [logging.py:96:log_dist] [Rank 0] step=870, skipped=16, lr=[0.0007492905957936784], mom=[(0.9, 0.95)]
[2023-04-19 17:42:17,575] [INFO] [timer.py:199:stop] epoch=0/micro_step=1740/global_step=870, RunningAvgSamplesPerSec=12.344409548735772, CurrSamplesPerSec=12.804170059275858, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:42:43,355] [INFO] [logging.py:96:log_dist] [Rank 0] step=880, skipped=16, lr=[0.0007439488884321635], mom=[(0.9, 0.95)]
[2023-04-19 17:42:43,355] [INFO] [timer.py:199:stop] epoch=0/micro_step=1760/global_step=880, RunningAvgSamplesPerSec=12.345321702239133, CurrSamplesPerSec=11.084045608043938, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:43:08,447] [INFO] [logging.py:96:log_dist] [Rank 0] step=890, skipped=16, lr=[0.0007385703857959276], mom=[(0.9, 0.95)]
[2023-04-19 17:43:08,447] [INFO] [timer.py:199:stop] epoch=0/micro_step=1780/global_step=890, RunningAvgSamplesPerSec=12.349907530652988, CurrSamplesPerSec=12.766375184074995, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:43:34,362] [INFO] [logging.py:96:log_dist] [Rank 0] step=900, skipped=16, lr=[0.0007331558991347511], mom=[(0.9, 0.95)]
[2023-04-19 17:43:34,363] [INFO] [timer.py:199:stop] epoch=0/micro_step=1800/global_step=900, RunningAvgSamplesPerSec=12.350024217868127, CurrSamplesPerSec=12.711335014884598, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:43:59,715] [INFO] [logging.py:96:log_dist] [Rank 0] step=910, skipped=16, lr=[0.0007277062451259528], mom=[(0.9, 0.95)]
[2023-04-19 17:43:59,716] [INFO] [timer.py:199:stop] epoch=0/micro_step=1820/global_step=910, RunningAvgSamplesPerSec=12.353091868169075, CurrSamplesPerSec=12.581144742324476, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:44:18,143] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:44:20,668] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:44:25,811] [INFO] [logging.py:96:log_dist] [Rank 0] step=920, skipped=18, lr=[0.0007233217536252489], mom=[(0.9, 0.95)]
[2023-04-19 17:44:25,811] [INFO] [timer.py:199:stop] epoch=0/micro_step=1840/global_step=920, RunningAvgSamplesPerSec=12.35223511923478, CurrSamplesPerSec=12.48053108339018, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:44:51,480] [INFO] [logging.py:96:log_dist] [Rank 0] step=930, skipped=18, lr=[0.0007178108732699562], mom=[(0.9, 0.95)]
[2023-04-19 17:44:51,480] [INFO] [timer.py:199:stop] epoch=0/micro_step=1860/global_step=930, RunningAvgSamplesPerSec=12.3535888911587, CurrSamplesPerSec=12.434895936355083, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:45:18,016] [INFO] [logging.py:96:log_dist] [Rank 0] step=940, skipped=18, lr=[0.000712267140086472], mom=[(0.9, 0.95)]
[2023-04-19 17:45:18,016] [INFO] [timer.py:199:stop] epoch=0/micro_step=1880/global_step=940, RunningAvgSamplesPerSec=12.350506541077507, CurrSamplesPerSec=12.352032441613526, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:45:44,301] [INFO] [logging.py:96:log_dist] [Rank 0] step=950, skipped=18, lr=[0.0007066913902466141], mom=[(0.9, 0.95)]
[2023-04-19 17:45:44,301] [INFO] [timer.py:199:stop] epoch=0/micro_step=1900/global_step=950, RunningAvgSamplesPerSec=12.34875418553038, CurrSamplesPerSec=10.873309381187074, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:46:10,498] [INFO] [logging.py:96:log_dist] [Rank 0] step=960, skipped=18, lr=[0.0007010844647513335], mom=[(0.9, 0.95)]
[2023-04-19 17:46:10,499] [INFO] [timer.py:199:stop] epoch=0/micro_step=1920/global_step=960, RunningAvgSamplesPerSec=12.347471208831822, CurrSamplesPerSec=12.461529691197287, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:46:37,017] [INFO] [logging.py:96:log_dist] [Rank 0] step=970, skipped=18, lr=[0.000695447209303864], mom=[(0.9, 0.95)]
[2023-04-19 17:46:37,018] [INFO] [timer.py:199:stop] epoch=0/micro_step=1940/global_step=970, RunningAvgSamplesPerSec=12.344635758493899, CurrSamplesPerSec=10.841980905932228, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:47:02,810] [INFO] [logging.py:96:log_dist] [Rank 0] step=980, skipped=18, lr=[0.0006897804741821649], mom=[(0.9, 0.95)]
[2023-04-19 17:47:02,810] [INFO] [timer.py:199:stop] epoch=0/micro_step=1960/global_step=980, RunningAvgSamplesPerSec=12.345394722587116, CurrSamplesPerSec=12.393337697206483, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:47:29,294] [INFO] [logging.py:96:log_dist] [Rank 0] step=990, skipped=18, lr=[0.0006840851141106694], mom=[(0.9, 0.95)]
[2023-04-19 17:47:29,294] [INFO] [timer.py:199:stop] epoch=0/micro_step=1980/global_step=990, RunningAvgSamplesPerSec=12.34280801200078, CurrSamplesPerSec=12.368272990522472, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:47:55,162] [INFO] [logging.py:96:log_dist] [Rank 0] step=1000, skipped=18, lr=[0.0006783619881313676], mom=[(0.9, 0.95)]
[2023-04-19 17:47:55,162] [INFO] [timer.py:199:stop] epoch=0/micro_step=2000/global_step=1000, RunningAvgSamplesPerSec=12.343210472186934, CurrSamplesPerSec=12.339334311891653, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:48:21,596] [INFO] [logging.py:96:log_dist] [Rank 0] step=1010, skipped=18, lr=[0.0006726119594742333], mom=[(0.9, 0.95)]
[2023-04-19 17:48:21,597] [INFO] [timer.py:199:stop] epoch=0/micro_step=2020/global_step=1010, RunningAvgSamplesPerSec=12.340929143415744, CurrSamplesPerSec=12.375618457152315, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:48:44,790] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:48:47,330] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:48:47,331] [INFO] [logging.py:96:log_dist] [Rank 0] step=1020, skipped=20, lr=[0.0006679931493048548], mom=[(0.9, 0.95)]
[2023-04-19 17:48:47,331] [INFO] [timer.py:199:stop] epoch=0/micro_step=2040/global_step=1020, RunningAvgSamplesPerSec=12.341967169670106, CurrSamplesPerSec=12.609502682829376, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:49:13,879] [INFO] [logging.py:96:log_dist] [Rank 0] step=1030, skipped=20, lr=[0.000662196884036101], mom=[(0.9, 0.95)]
[2023-04-19 17:49:13,880] [INFO] [timer.py:199:stop] epoch=0/micro_step=2060/global_step=1030, RunningAvgSamplesPerSec=12.339214394571659, CurrSamplesPerSec=12.447448749159538, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:49:40,041] [INFO] [logging.py:96:log_dist] [Rank 0] step=1040, skipped=20, lr=[0.0006563761543029039], mom=[(0.9, 0.95)]
[2023-04-19 17:49:40,042] [INFO] [timer.py:199:stop] epoch=0/micro_step=2080/global_step=1040, RunningAvgSamplesPerSec=12.338287948072862, CurrSamplesPerSec=10.883461229547047, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:50:06,208] [INFO] [logging.py:96:log_dist] [Rank 0] step=1050, skipped=20, lr=[0.000650531838056998], mom=[(0.9, 0.95)]
[2023-04-19 17:50:06,208] [INFO] [timer.py:199:stop] epoch=0/micro_step=2100/global_step=1050, RunningAvgSamplesPerSec=12.337358766530718, CurrSamplesPerSec=12.446037095975667, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:50:32,591] [INFO] [logging.py:96:log_dist] [Rank 0] step=1060, skipped=20, lr=[0.0006446648168077156], mom=[(0.9, 0.95)]
[2023-04-19 17:50:32,592] [INFO] [timer.py:199:stop] epoch=0/micro_step=2120/global_step=1060, RunningAvgSamplesPerSec=12.335472446032648, CurrSamplesPerSec=12.43088691461683, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:50:58,360] [INFO] [logging.py:96:log_dist] [Rank 0] step=1070, skipped=20, lr=[0.000638775975489028], mom=[(0.9, 0.95)]
[2023-04-19 17:50:58,361] [INFO] [timer.py:199:stop] epoch=0/micro_step=2140/global_step=1070, RunningAvgSamplesPerSec=12.336356910225373, CurrSamplesPerSec=12.431173598785648, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:51:24,880] [INFO] [logging.py:96:log_dist] [Rank 0] step=1080, skipped=20, lr=[0.0006328662023260695], mom=[(0.9, 0.95)]
[2023-04-19 17:51:24,880] [INFO] [timer.py:199:stop] epoch=0/micro_step=2160/global_step=1080, RunningAvgSamplesPerSec=12.333914084704624, CurrSamplesPerSec=12.393311376739035, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:51:50,708] [INFO] [logging.py:96:log_dist] [Rank 0] step=1090, skipped=20, lr=[0.0006269363887011636], mom=[(0.9, 0.95)]
[2023-04-19 17:51:50,709] [INFO] [timer.py:199:stop] epoch=0/micro_step=2180/global_step=1090, RunningAvgSamplesPerSec=12.334540626156128, CurrSamplesPerSec=12.313492024901896, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:52:17,372] [INFO] [logging.py:96:log_dist] [Rank 0] step=1100, skipped=20, lr=[0.0006209874290193754], mom=[(0.9, 0.95)]
[2023-04-19 17:52:17,372] [INFO] [timer.py:199:stop] epoch=0/micro_step=2200/global_step=1100, RunningAvgSamplesPerSec=12.33154887382222, CurrSamplesPerSec=12.279735312421261, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:52:43,396] [INFO] [logging.py:96:log_dist] [Rank 0] step=1110, skipped=20, lr=[0.0006150202205736057], mom=[(0.9, 0.95)]
[2023-04-19 17:52:43,397] [INFO] [timer.py:199:stop] epoch=0/micro_step=2220/global_step=1110, RunningAvgSamplesPerSec=12.331350008579633, CurrSamplesPerSec=12.308929838645925, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:53:10,046] [INFO] [logging.py:96:log_dist] [Rank 0] step=1120, skipped=20, lr=[0.0006090356634092513], mom=[(0.9, 0.95)]
[2023-04-19 17:53:10,047] [INFO] [timer.py:199:stop] epoch=0/micro_step=2240/global_step=1120, RunningAvgSamplesPerSec=12.328499180436237, CurrSamplesPerSec=12.302516879811852, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:53:12,580] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:53:15,130] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:53:36,361] [INFO] [logging.py:96:log_dist] [Rank 0] step=1130, skipped=22, lr=[0.0006042361331048955], mom=[(0.9, 0.95)]
[2023-04-19 17:53:36,361] [INFO] [timer.py:199:stop] epoch=0/micro_step=2260/global_step=1130, RunningAvgSamplesPerSec=12.327112608764459, CurrSamplesPerSec=12.31348072818655, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:54:02,770] [INFO] [logging.py:96:log_dist] [Rank 0] step=1140, skipped=22, lr=[0.0005982226246272145], mom=[(0.9, 0.95)]
[2023-04-19 17:54:02,771] [INFO] [timer.py:199:stop] epoch=0/micro_step=2280/global_step=1140, RunningAvgSamplesPerSec=12.3253524395009, CurrSamplesPerSec=12.32361769217392, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:54:29,536] [INFO] [logging.py:96:log_dist] [Rank 0] step=1150, skipped=22, lr=[0.0005921943010442869], mom=[(0.9, 0.95)]
[2023-04-19 17:54:29,537] [INFO] [timer.py:199:stop] epoch=0/micro_step=2300/global_step=1150, RunningAvgSamplesPerSec=12.322150881860248, CurrSamplesPerSec=12.302494326659394, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:54:55,579] [INFO] [logging.py:96:log_dist] [Rank 0] step=1160, skipped=22, lr=[0.0005861520716196217], mom=[(0.9, 0.95)]
[2023-04-19 17:54:55,579] [INFO] [timer.py:199:stop] epoch=0/micro_step=2320/global_step=1160, RunningAvgSamplesPerSec=12.321969112440607, CurrSamplesPerSec=12.287758879731456, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:55:22,343] [INFO] [logging.py:96:log_dist] [Rank 0] step=1170, skipped=22, lr=[0.0005800968477141724], mom=[(0.9, 0.95)]
[2023-04-19 17:55:22,344] [INFO] [timer.py:199:stop] epoch=0/micro_step=2340/global_step=1170, RunningAvgSamplesPerSec=12.318860355457225, CurrSamplesPerSec=12.258176434330014, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:55:48,361] [INFO] [logging.py:96:log_dist] [Rank 0] step=1180, skipped=22, lr=[0.000574029542648875], mom=[(0.9, 0.95)]
[2023-04-19 17:55:48,361] [INFO] [timer.py:199:stop] epoch=0/micro_step=2360/global_step=1180, RunningAvgSamplesPerSec=12.318809050479222, CurrSamplesPerSec=12.348782177117398, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:56:14,938] [INFO] [logging.py:96:log_dist] [Rank 0] step=1190, skipped=22, lr=[0.0005679510715668897], mom=[(0.9, 0.95)]
[2023-04-19 17:56:14,939] [INFO] [timer.py:199:stop] epoch=0/micro_step=2380/global_step=1190, RunningAvgSamplesPerSec=12.316525641512154, CurrSamplesPerSec=12.347010026434933, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:56:41,307] [INFO] [logging.py:96:log_dist] [Rank 0] step=1200, skipped=22, lr=[0.0005618623512955685], mom=[(0.9, 0.95)]
[2023-04-19 17:56:41,308] [INFO] [timer.py:199:stop] epoch=0/micro_step=2400/global_step=1200, RunningAvgSamplesPerSec=12.315105038960837, CurrSamplesPerSec=10.827393883169135, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:57:07,704] [INFO] [logging.py:96:log_dist] [Rank 0] step=1210, skipped=22, lr=[0.0005557643002081674], mom=[(0.9, 0.95)]
[2023-04-19 17:57:07,705] [INFO] [timer.py:199:stop] epoch=0/micro_step=2420/global_step=1210, RunningAvgSamplesPerSec=12.313597870894732, CurrSamplesPerSec=12.29607905829239, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:57:34,436] [INFO] [logging.py:96:log_dist] [Rank 0] step=1220, skipped=22, lr=[0.000549657838085328], mom=[(0.9, 0.95)]
[2023-04-19 17:57:34,437] [INFO] [timer.py:199:stop] epoch=0/micro_step=2440/global_step=1220, RunningAvgSamplesPerSec=12.3108149927377, CurrSamplesPerSec=10.727947607851789, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:57:42,160] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 17:57:44,721] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 17:58:00,350] [INFO] [logging.py:96:log_dist] [Rank 0] step=1230, skipped=24, lr=[0.000544767231347586], mom=[(0.9, 0.95)]
[2023-04-19 17:58:00,351] [INFO] [timer.py:199:stop] epoch=0/micro_step=2460/global_step=1230, RunningAvgSamplesPerSec=12.311230504672189, CurrSamplesPerSec=12.343848682564769, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:58:27,105] [INFO] [logging.py:96:log_dist] [Rank 0] step=1240, skipped=24, lr=[0.0005386479511690275], mom=[(0.9, 0.95)]
[2023-04-19 17:58:27,106] [INFO] [timer.py:199:stop] epoch=0/micro_step=2480/global_step=1240, RunningAvgSamplesPerSec=12.3084254813281, CurrSamplesPerSec=12.358059046593949, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:58:53,096] [INFO] [logging.py:96:log_dist] [Rank 0] step=1250, skipped=24, lr=[0.0005325228416465036], mom=[(0.9, 0.95)]
[2023-04-19 17:58:53,096] [INFO] [timer.py:199:stop] epoch=0/micro_step=2500/global_step=1250, RunningAvgSamplesPerSec=12.308565558430116, CurrSamplesPerSec=12.362821707537037, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:59:19,726] [INFO] [logging.py:96:log_dist] [Rank 0] step=1260, skipped=24, lr=[0.0005263928266419306], mom=[(0.9, 0.95)]
[2023-04-19 17:59:19,726] [INFO] [timer.py:199:stop] epoch=0/micro_step=2520/global_step=1260, RunningAvgSamplesPerSec=12.306294872236686, CurrSamplesPerSec=12.285429537813988, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 17:59:45,724] [INFO] [logging.py:96:log_dist] [Rank 0] step=1270, skipped=24, lr=[0.0005202588307571282], mom=[(0.9, 0.95)]
[2023-04-19 17:59:45,725] [INFO] [timer.py:199:stop] epoch=0/micro_step=2540/global_step=1270, RunningAvgSamplesPerSec=12.306418820802854, CurrSamplesPerSec=12.375375407494394, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 18:00:12,349] [INFO] [logging.py:96:log_dist] [Rank 0] step=1280, skipped=24, lr=[0.0005141217791943596], mom=[(0.9, 0.95)]
[2023-04-19 18:00:12,350] [INFO] [timer.py:199:stop] epoch=0/micro_step=2560/global_step=1280, RunningAvgSamplesPerSec=12.304221787202156, CurrSamplesPerSec=12.32757139885218, MemAllocated=1.95GB, MaxMemAllocated=13.61GB
[2023-04-19 18:00:38,706] [INFO] [logging.py:96:log_dist] [Rank 0] step=1290, skipped=24, lr=[0.0005079825976167822], mom=[(0.9, 0.95)]
[2023-04-19 18:00:38,707] [INFO] [timer.py:199:stop] epoch=0/micro_step=2580/global_step=1290, RunningAvgSamplesPerSec=12.303041637793852, CurrSamplesPerSec=10.799450282422233, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:01:05,115] [INFO] [logging.py:96:log_dist] [Rank 0] step=1300, skipped=24, lr=[0.000501842212008827], mom=[(0.9, 0.95)]
[2023-04-19 18:01:05,116] [INFO] [timer.py:199:stop] epoch=0/micro_step=2600/global_step=1300, RunningAvgSamplesPerSec=12.301692628837143, CurrSamplesPerSec=12.321747554864698, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:01:31,885] [INFO] [logging.py:96:log_dist] [Rank 0] step=1310, skipped=24, lr=[0.0004957015485365313], mom=[(0.9, 0.95)]
[2023-04-19 18:01:31,886] [INFO] [timer.py:199:stop] epoch=0/micro_step=2620/global_step=1310, RunningAvgSamplesPerSec=12.299057767730432, CurrSamplesPerSec=10.716507333570151, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:01:57,912] [INFO] [logging.py:96:log_dist] [Rank 0] step=1320, skipped=24, lr=[0.0004895615334078436], mom=[(0.9, 0.95)]
[2023-04-19 18:01:57,913] [INFO] [timer.py:199:stop] epoch=0/micro_step=2640/global_step=1320, RunningAvgSamplesPerSec=12.299131376088003, CurrSamplesPerSec=12.290784630892936, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:02:11,118] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:02:13,676] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:02:24,488] [INFO] [logging.py:96:log_dist] [Rank 0] step=1330, skipped=26, lr=[0.0004846506104651698], mom=[(0.9, 0.95)]
[2023-04-19 18:02:24,489] [INFO] [timer.py:199:stop] epoch=0/micro_step=2660/global_step=1330, RunningAvgSamplesPerSec=12.297245436028547, CurrSamplesPerSec=12.321097156185356, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:02:50,544] [INFO] [logging.py:96:log_dist] [Rank 0] step=1340, skipped=26, lr=[0.00047851409599768043], mom=[(0.9, 0.95)]
[2023-04-19 18:02:50,545] [INFO] [timer.py:199:stop] epoch=0/micro_step=2680/global_step=1340, RunningAvgSamplesPerSec=12.297227368370496, CurrSamplesPerSec=12.2613119643179, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:03:17,310] [INFO] [logging.py:96:log_dist] [Rank 0] step=1350, skipped=26, lr=[0.0004723808222899481], mom=[(0.9, 0.95)]
[2023-04-19 18:03:17,311] [INFO] [timer.py:199:stop] epoch=0/micro_step=2700/global_step=1350, RunningAvgSamplesPerSec=12.294722758257807, CurrSamplesPerSec=12.307697273572408, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:03:43,362] [INFO] [logging.py:96:log_dist] [Rank 0] step=1360, skipped=26, lr=[0.0004662517144353085], mom=[(0.9, 0.95)]
[2023-04-19 18:03:43,363] [INFO] [timer.py:199:stop] epoch=0/micro_step=2720/global_step=1360, RunningAvgSamplesPerSec=12.294736732905998, CurrSamplesPerSec=12.305249806208746, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:04:10,013] [INFO] [logging.py:96:log_dist] [Rank 0] step=1370, skipped=26, lr=[0.0004601276968987546], mom=[(0.9, 0.95)]
[2023-04-19 18:04:10,014] [INFO] [timer.py:199:stop] epoch=0/micro_step=2740/global_step=1370, RunningAvgSamplesPerSec=12.292682779748246, CurrSamplesPerSec=12.342967791868034, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:04:36,396] [INFO] [logging.py:96:log_dist] [Rank 0] step=1380, skipped=26, lr=[0.0004540096933774962], mom=[(0.9, 0.95)]
[2023-04-19 18:04:36,396] [INFO] [timer.py:199:stop] epoch=0/micro_step=2760/global_step=1380, RunningAvgSamplesPerSec=12.291579956405803, CurrSamplesPerSec=12.317193944852322, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:05:02,819] [INFO] [logging.py:96:log_dist] [Rank 0] step=1390, skipped=26, lr=[0.00044789862666163807], mom=[(0.9, 0.95)]
[2023-04-19 18:05:02,819] [INFO] [timer.py:199:stop] epoch=0/micro_step=2780/global_step=1390, RunningAvgSamplesPerSec=12.290354577889605, CurrSamplesPerSec=12.290194891983273, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:05:29,595] [INFO] [logging.py:96:log_dist] [Rank 0] step=1400, skipped=26, lr=[0.0004417954184949932], mom=[(0.9, 0.95)]
[2023-04-19 18:05:29,596] [INFO] [timer.py:199:stop] epoch=0/micro_step=2800/global_step=1400, RunningAvgSamplesPerSec=12.287955655202952, CurrSamplesPerSec=12.235999243692683, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:05:55,671] [INFO] [logging.py:96:log_dist] [Rank 0] step=1410, skipped=26, lr=[0.0004357009894360553], mom=[(0.9, 0.95)]
[2023-04-19 18:05:55,671] [INFO] [timer.py:199:stop] epoch=0/micro_step=2820/global_step=1410, RunningAvgSamplesPerSec=12.287937989215635, CurrSamplesPerSec=12.295943882201728, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:06:22,415] [INFO] [logging.py:96:log_dist] [Rank 0] step=1420, skipped=26, lr=[0.0004296162587191479], mom=[(0.9, 0.95)]
[2023-04-19 18:06:22,416] [INFO] [timer.py:199:stop] epoch=0/micro_step=2840/global_step=1420, RunningAvgSamplesPerSec=12.285696192675177, CurrSamplesPerSec=12.326868307105308, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:06:40,557] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:06:43,112] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:06:48,337] [INFO] [logging.py:96:log_dist] [Rank 0] step=1430, skipped=28, lr=[0.0004247560737470216], mom=[(0.9, 0.95)]
[2023-04-19 18:06:48,338] [INFO] [timer.py:199:stop] epoch=0/micro_step=2860/global_step=1430, RunningAvgSamplesPerSec=12.286200975609571, CurrSamplesPerSec=12.302398476683939, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:07:15,113] [INFO] [logging.py:96:log_dist] [Rank 0] step=1440, skipped=28, lr=[0.00041869111175856633], mom=[(0.9, 0.95)]
[2023-04-19 18:07:15,114] [INFO] [timer.py:199:stop] epoch=0/micro_step=2880/global_step=1440, RunningAvgSamplesPerSec=12.283901533897822, CurrSamplesPerSec=12.290463868931733, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:07:41,149] [INFO] [logging.py:96:log_dist] [Rank 0] step=1450, skipped=28, lr=[0.00041263841374433654], mom=[(0.9, 0.95)]
[2023-04-19 18:07:41,149] [INFO] [timer.py:199:stop] epoch=0/micro_step=2900/global_step=1450, RunningAvgSamplesPerSec=12.284042842085487, CurrSamplesPerSec=12.325609509044535, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:08:07,778] [INFO] [logging.py:96:log_dist] [Rank 0] step=1460, skipped=28, lr=[0.00040659889264428324], mom=[(0.9, 0.95)]
[2023-04-19 18:08:07,779] [INFO] [timer.py:199:stop] epoch=0/micro_step=2920/global_step=1460, RunningAvgSamplesPerSec=12.282261851329789, CurrSamplesPerSec=12.314158567797463, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:08:34,176] [INFO] [logging.py:96:log_dist] [Rank 0] step=1470, skipped=28, lr=[0.0004005734594108583], mom=[(0.9, 0.95)]
[2023-04-19 18:08:34,177] [INFO] [timer.py:199:stop] epoch=0/micro_step=2940/global_step=1470, RunningAvgSamplesPerSec=12.28124751646962, CurrSamplesPerSec=12.284246646807013, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:09:00,567] [INFO] [logging.py:96:log_dist] [Rank 0] step=1480, skipped=28, lr=[0.00039456302287161396], mom=[(0.9, 0.95)]
[2023-04-19 18:09:00,567] [INFO] [timer.py:199:stop] epoch=0/micro_step=2960/global_step=1480, RunningAvgSamplesPerSec=12.280273099429602, CurrSamplesPerSec=12.304348471794587, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:09:27,304] [INFO] [logging.py:96:log_dist] [Rank 0] step=1490, skipped=28, lr=[0.0003885684895921226], mom=[(0.9, 0.95)]
[2023-04-19 18:09:27,304] [INFO] [timer.py:199:stop] epoch=0/micro_step=2980/global_step=1490, RunningAvgSamplesPerSec=12.278213162378892, CurrSamplesPerSec=12.288593653679008, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:09:53,333] [INFO] [logging.py:96:log_dist] [Rank 0] step=1500, skipped=28, lr=[0.0003825907637392375], mom=[(0.9, 0.95)]
[2023-04-19 18:09:53,334] [INFO] [timer.py:199:stop] epoch=0/micro_step=3000/global_step=1500, RunningAvgSamplesPerSec=12.27840720321145, CurrSamplesPerSec=12.275688721970516, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:10:20,080] [INFO] [logging.py:96:log_dist] [Rank 0] step=1510, skipped=28, lr=[0.0003766307469447161], mom=[(0.9, 0.95)]
[2023-04-19 18:10:20,080] [INFO] [timer.py:199:stop] epoch=0/micro_step=3020/global_step=1510, RunningAvgSamplesPerSec=12.276358165025238, CurrSamplesPerSec=12.341332347628354, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:10:46,100] [INFO] [logging.py:96:log_dist] [Rank 0] step=1520, skipped=28, lr=[0.00037068933816922456], mom=[(0.9, 0.95)]
[2023-04-19 18:10:46,100] [INFO] [timer.py:199:stop] epoch=0/micro_step=3040/global_step=1520, RunningAvgSamplesPerSec=12.276591206833402, CurrSamplesPerSec=12.318812821547843, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:11:10,214] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:11:12,767] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:11:12,767] [INFO] [logging.py:96:log_dist] [Rank 0] step=1530, skipped=30, lr=[0.000365950211235768], mom=[(0.9, 0.95)]
[2023-04-19 18:11:12,768] [INFO] [timer.py:199:stop] epoch=0/micro_step=3060/global_step=1530, RunningAvgSamplesPerSec=12.274823812996173, CurrSamplesPerSec=12.545723730485774, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:11:39,159] [INFO] [logging.py:96:log_dist] [Rank 0] step=1540, skipped=30, lr=[0.00036004455323017474], mom=[(0.9, 0.95)]
[2023-04-19 18:11:39,159] [INFO] [timer.py:199:stop] epoch=0/micro_step=3080/global_step=1540, RunningAvgSamplesPerSec=12.273924370839671, CurrSamplesPerSec=10.841243528321511, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:12:05,392] [INFO] [logging.py:96:log_dist] [Rank 0] step=1550, skipped=30, lr=[0.00035416000497074865], mom=[(0.9, 0.95)]
[2023-04-19 18:12:05,393] [INFO] [timer.py:199:stop] epoch=0/micro_step=3100/global_step=1550, RunningAvgSamplesPerSec=12.273519460152688, CurrSamplesPerSec=12.274678332960356, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:12:31,989] [INFO] [logging.py:96:log_dist] [Rank 0] step=1560, skipped=30, lr=[0.0003482974540350933], mom=[(0.9, 0.95)]
[2023-04-19 18:12:31,990] [INFO] [timer.py:199:stop] epoch=0/micro_step=3120/global_step=1560, RunningAvgSamplesPerSec=12.272017635829767, CurrSamplesPerSec=10.848107117940044, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:12:57,722] [INFO] [logging.py:96:log_dist] [Rank 0] step=1570, skipped=30, lr=[0.0003424577846829144], mom=[(0.9, 0.95)]
[2023-04-19 18:12:57,722] [INFO] [timer.py:199:stop] epoch=0/micro_step=3140/global_step=1570, RunningAvgSamplesPerSec=12.273125881399084, CurrSamplesPerSec=12.488360282731884, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:13:24,190] [INFO] [logging.py:96:log_dist] [Rank 0] step=1580, skipped=30, lr=[0.00033664187772264466], mom=[(0.9, 0.95)]
[2023-04-19 18:13:24,190] [INFO] [timer.py:199:stop] epoch=0/micro_step=3160/global_step=1580, RunningAvgSamplesPerSec=12.27202700089158, CurrSamplesPerSec=12.450442790397208, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:13:49,948] [INFO] [logging.py:96:log_dist] [Rank 0] step=1590, skipped=30, lr=[0.00033085061037859], mom=[(0.9, 0.95)]
[2023-04-19 18:13:49,949] [INFO] [timer.py:199:stop] epoch=0/micro_step=3180/global_step=1590, RunningAvgSamplesPerSec=12.27304390587419, CurrSamplesPerSec=12.406213786289506, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:14:16,439] [INFO] [logging.py:96:log_dist] [Rank 0] step=1600, skipped=30, lr=[0.00032508485615861607], mom=[(0.9, 0.95)]
[2023-04-19 18:14:16,439] [INFO] [timer.py:199:stop] epoch=0/micro_step=3200/global_step=1600, RunningAvgSamplesPerSec=12.271896058667723, CurrSamplesPerSec=12.42768362926357, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:14:42,173] [INFO] [logging.py:96:log_dist] [Rank 0] step=1610, skipped=30, lr=[0.0003193454847223962], mom=[(0.9, 0.95)]
[2023-04-19 18:14:42,174] [INFO] [timer.py:199:stop] epoch=0/micro_step=3220/global_step=1610, RunningAvgSamplesPerSec=12.272971178673968, CurrSamplesPerSec=12.442486870831228, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:15:08,528] [INFO] [logging.py:96:log_dist] [Rank 0] step=1620, skipped=30, lr=[0.00031363336175023725], mom=[(0.9, 0.95)]
[2023-04-19 18:15:08,528] [INFO] [timer.py:199:stop] epoch=0/micro_step=3240/global_step=1620, RunningAvgSamplesPerSec=12.27222947378135, CurrSamplesPerSec=12.439632699307893, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:15:34,663] [INFO] [logging.py:96:log_dist] [Rank 0] step=1630, skipped=30, lr=[0.0003079493488125092], mom=[(0.9, 0.95)]
[2023-04-19 18:15:34,664] [INFO] [timer.py:199:stop] epoch=0/micro_step=3260/global_step=1630, RunningAvgSamplesPerSec=12.272130563979738, CurrSamplesPerSec=12.395891314029205, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:15:37,182] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:15:39,970] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:16:00,634] [INFO] [logging.py:96:log_dist] [Rank 0] step=1640, skipped=32, lr=[0.0003034229539589651], mom=[(0.9, 0.95)]
[2023-04-19 18:16:00,635] [INFO] [timer.py:199:stop] epoch=0/micro_step=3280/global_step=1640, RunningAvgSamplesPerSec=12.272505412199054, CurrSamplesPerSec=12.391153478786137, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:16:27,180] [INFO] [logging.py:96:log_dist] [Rank 0] step=1650, skipped=32, lr=[0.00029779169662424564], mom=[(0.9, 0.95)]
[2023-04-19 18:16:27,180] [INFO] [timer.py:199:stop] epoch=0/micro_step=3300/global_step=1650, RunningAvgSamplesPerSec=12.271236433244209, CurrSamplesPerSec=10.890016115419574, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:16:52,970] [INFO] [logging.py:96:log_dist] [Rank 0] step=1660, skipped=32, lr=[0.00029219093875243143], mom=[(0.9, 0.95)]
[2023-04-19 18:16:52,971] [INFO] [timer.py:199:stop] epoch=0/micro_step=3320/global_step=1660, RunningAvgSamplesPerSec=12.27212462539587, CurrSamplesPerSec=12.348976463033916, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:17:19,514] [INFO] [logging.py:96:log_dist] [Rank 0] step=1670, skipped=32, lr=[0.0002866215251164824], mom=[(0.9, 0.95)]
[2023-04-19 18:17:19,515] [INFO] [timer.py:199:stop] epoch=0/micro_step=3340/global_step=1670, RunningAvgSamplesPerSec=12.270876288262468, CurrSamplesPerSec=12.430595638622705, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:17:45,354] [INFO] [logging.py:96:log_dist] [Rank 0] step=1680, skipped=32, lr=[0.0002810842957616477], mom=[(0.9, 0.95)]
[2023-04-19 18:17:45,355] [INFO] [timer.py:199:stop] epoch=0/micro_step=3360/global_step=1680, RunningAvgSamplesPerSec=12.271617283094267, CurrSamplesPerSec=12.406374333326339, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:18:11,907] [INFO] [logging.py:96:log_dist] [Rank 0] step=1690, skipped=32, lr=[0.00027558008587876047], mom=[(0.9, 0.95)]
[2023-04-19 18:18:11,907] [INFO] [timer.py:199:stop] epoch=0/micro_step=3380/global_step=1690, RunningAvgSamplesPerSec=12.270363834350324, CurrSamplesPerSec=12.39498237596127, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:18:37,648] [INFO] [logging.py:96:log_dist] [Rank 0] step=1700, skipped=32, lr=[0.00027010972567826367], mom=[(0.9, 0.95)]
[2023-04-19 18:18:37,649] [INFO] [timer.py:199:stop] epoch=0/micro_step=3400/global_step=1700, RunningAvgSamplesPerSec=12.271373139771677, CurrSamplesPerSec=12.584368640670158, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:19:03,554] [INFO] [logging.py:96:log_dist] [Rank 0] step=1710, skipped=32, lr=[0.000264674040264988], mom=[(0.9, 0.95)]
[2023-04-19 18:19:03,554] [INFO] [timer.py:199:stop] epoch=0/micro_step=3420/global_step=1710, RunningAvgSamplesPerSec=12.271917693197654, CurrSamplesPerSec=12.828423573004878, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:19:28,898] [INFO] [logging.py:96:log_dist] [Rank 0] step=1720, skipped=32, lr=[0.00025927384951370127], mom=[(0.9, 0.95)]
[2023-04-19 18:19:28,899] [INFO] [timer.py:199:stop] epoch=0/micro_step=3440/global_step=1720, RunningAvgSamplesPerSec=12.273993814762228, CurrSamplesPerSec=12.802104838251223, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:19:54,046] [INFO] [logging.py:96:log_dist] [Rank 0] step=1730, skipped=32, lr=[0.0002539099679454425], mom=[(0.9, 0.95)]
[2023-04-19 18:19:54,047] [INFO] [timer.py:199:stop] epoch=0/micro_step=3460/global_step=1730, RunningAvgSamplesPerSec=12.276580675964897, CurrSamplesPerSec=12.900282740307876, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:20:01,466] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:20:03,937] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:20:19,636] [INFO] [logging.py:96:log_dist] [Rank 0] step=1740, skipped=34, lr=[0.00024964554916762446], mom=[(0.9, 0.95)]
[2023-04-19 18:20:19,637] [INFO] [timer.py:199:stop] epoch=0/micro_step=3480/global_step=1740, RunningAvgSamplesPerSec=12.277943442484174, CurrSamplesPerSec=12.880564950258988, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:20:44,554] [INFO] [logging.py:96:log_dist] [Rank 0] step=1750, skipped=34, lr=[0.00024434905916265827], mom=[(0.9, 0.95)]
[2023-04-19 18:20:44,555] [INFO] [timer.py:199:stop] epoch=0/micro_step=3500/global_step=1750, RunningAvgSamplesPerSec=12.281099911613431, CurrSamplesPerSec=12.852529143234488, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:21:10,261] [INFO] [logging.py:96:log_dist] [Rank 0] step=1760, skipped=34, lr=[0.00023909112947522872], mom=[(0.9, 0.95)]
[2023-04-19 18:21:10,262] [INFO] [timer.py:199:stop] epoch=0/micro_step=3520/global_step=1760, RunningAvgSamplesPerSec=12.282106025091206, CurrSamplesPerSec=12.809001687377384, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:21:35,230] [INFO] [logging.py:96:log_dist] [Rank 0] step=1770, skipped=34, lr=[0.00023387255316886947], mom=[(0.9, 0.95)]
[2023-04-19 18:21:35,231] [INFO] [timer.py:199:stop] epoch=0/micro_step=3540/global_step=1770, RunningAvgSamplesPerSec=12.285070635156188, CurrSamplesPerSec=12.802605510726918, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:22:00,969] [INFO] [logging.py:96:log_dist] [Rank 0] step=1780, skipped=34, lr=[0.00022869411737136774], mom=[(0.9, 0.95)]
[2023-04-19 18:22:00,969] [INFO] [timer.py:199:stop] epoch=0/micro_step=3560/global_step=1780, RunningAvgSamplesPerSec=12.285961243756674, CurrSamplesPerSec=12.798800161308426, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:22:26,394] [INFO] [logging.py:96:log_dist] [Rank 0] step=1790, skipped=34, lr=[0.0002235566031560417], mom=[(0.9, 0.95)]
[2023-04-19 18:22:26,395] [INFO] [timer.py:199:stop] epoch=0/micro_step=3580/global_step=1790, RunningAvgSamplesPerSec=12.287666145186579, CurrSamplesPerSec=11.188044943992558, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:22:51,936] [INFO] [logging.py:96:log_dist] [Rank 0] step=1800, skipped=34, lr=[0.00021846078542393004], mom=[(0.9, 0.95)]
[2023-04-19 18:22:51,936] [INFO] [timer.py:199:stop] epoch=0/micro_step=3600/global_step=1800, RunningAvgSamplesPerSec=12.289049568018969, CurrSamplesPerSec=12.733015954391846, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:23:17,617] [INFO] [logging.py:96:log_dist] [Rank 0] step=1810, skipped=34, lr=[0.00021340743278691076], mom=[(0.9, 0.95)]
[2023-04-19 18:23:17,617] [INFO] [timer.py:199:stop] epoch=0/micro_step=3620/global_step=1810, RunningAvgSamplesPerSec=12.290053744673086, CurrSamplesPerSec=12.60355859829003, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:23:43,421] [INFO] [logging.py:96:log_dist] [Rank 0] step=1820, skipped=34, lr=[0.00020839730745177148], mom=[(0.9, 0.95)]
[2023-04-19 18:23:43,421] [INFO] [timer.py:199:stop] epoch=0/micro_step=3640/global_step=1820, RunningAvgSamplesPerSec=12.290727365115005, CurrSamplesPerSec=12.491374039968793, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:24:09,755] [INFO] [logging.py:96:log_dist] [Rank 0] step=1830, skipped=34, lr=[0.00020343116510524367], mom=[(0.9, 0.95)]
[2023-04-19 18:24:09,756] [INFO] [timer.py:199:stop] epoch=0/micro_step=3660/global_step=1830, RunningAvgSamplesPerSec=12.290024273445455, CurrSamplesPerSec=12.415638048515792, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:24:22,647] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:24:25,197] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:24:35,610] [INFO] [logging.py:96:log_dist] [Rank 0] step=1840, skipped=36, lr=[0.00019949042256902537], mom=[(0.9, 0.95)]
[2023-04-19 18:24:35,610] [INFO] [timer.py:199:stop] epoch=0/micro_step=3680/global_step=1840, RunningAvgSamplesPerSec=12.290559956150119, CurrSamplesPerSec=12.350383229989983, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:25:02,172] [INFO] [logging.py:96:log_dist] [Rank 0] step=1850, skipped=36, lr=[0.00019460533268455865], mom=[(0.9, 0.95)]
[2023-04-19 18:25:02,173] [INFO] [timer.py:199:stop] epoch=0/micro_step=3700/global_step=1850, RunningAvgSamplesPerSec=12.289282459116265, CurrSamplesPerSec=12.435905221269186, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:25:27,919] [INFO] [logging.py:96:log_dist] [Rank 0] step=1860, skipped=36, lr=[0.00018976630605848356], mom=[(0.9, 0.95)]
[2023-04-19 18:25:27,920] [INFO] [timer.py:199:stop] epoch=0/micro_step=3720/global_step=1860, RunningAvgSamplesPerSec=12.290090474590235, CurrSamplesPerSec=12.435068747489805, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:25:54,350] [INFO] [logging.py:96:log_dist] [Rank 0] step=1870, skipped=36, lr=[0.00018497407257038722], mom=[(0.9, 0.95)]
[2023-04-19 18:25:54,351] [INFO] [timer.py:199:stop] epoch=0/micro_step=3740/global_step=1870, RunningAvgSamplesPerSec=12.28916153999188, CurrSamplesPerSec=12.468483660129504, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:26:20,422] [INFO] [logging.py:96:log_dist] [Rank 0] step=1880, skipped=36, lr=[0.00018022935504195952], mom=[(0.9, 0.95)]
[2023-04-19 18:26:20,422] [INFO] [timer.py:199:stop] epoch=0/micro_step=3760/global_step=1880, RunningAvgSamplesPerSec=12.289146106288744, CurrSamplesPerSec=10.895669559644977, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:26:46,605] [INFO] [logging.py:96:log_dist] [Rank 0] step=1890, skipped=36, lr=[0.00017553286912796773], mom=[(0.9, 0.95)]
[2023-04-19 18:26:46,605] [INFO] [timer.py:199:stop] epoch=0/micro_step=3780/global_step=1890, RunningAvgSamplesPerSec=12.288853181453334, CurrSamplesPerSec=12.376522274843671, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:27:12,953] [INFO] [logging.py:96:log_dist] [Rank 0] step=1900, skipped=36, lr=[0.00017088532320831245], mom=[(0.9, 0.95)]
[2023-04-19 18:27:12,954] [INFO] [timer.py:199:stop] epoch=0/micro_step=3800/global_step=1900, RunningAvgSamplesPerSec=12.288151161040204, CurrSamplesPerSec=11.314906634422599, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:27:38,340] [INFO] [logging.py:96:log_dist] [Rank 0] step=1910, skipped=36, lr=[0.00016628741828118255], mom=[(0.9, 0.95)]
[2023-04-19 18:27:38,340] [INFO] [timer.py:199:stop] epoch=0/micro_step=3820/global_step=1910, RunningAvgSamplesPerSec=12.289834917827946, CurrSamplesPerSec=12.758622957963134, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:28:04,093] [INFO] [logging.py:96:log_dist] [Rank 0] step=1920, skipped=36, lr=[0.0001617398478573211], mom=[(0.9, 0.95)]
[2023-04-19 18:28:04,094] [INFO] [timer.py:199:stop] epoch=0/micro_step=3840/global_step=1920, RunningAvgSamplesPerSec=12.290598323679253, CurrSamplesPerSec=12.841313334019006, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:28:29,058] [INFO] [logging.py:96:log_dist] [Rank 0] step=1930, skipped=36, lr=[0.0001572432978554223], mom=[(0.9, 0.95)]
[2023-04-19 18:28:29,058] [INFO] [timer.py:199:stop] epoch=0/micro_step=3860/global_step=1930, RunningAvgSamplesPerSec=12.293287579333615, CurrSamplesPerSec=12.792861649178567, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:28:47,200] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:28:49,671] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:28:54,671] [INFO] [logging.py:96:log_dist] [Rank 0] step=1940, skipped=38, lr=[0.0001536832485848859], mom=[(0.9, 0.95)]
[2023-04-19 18:28:54,671] [INFO] [timer.py:199:stop] epoch=0/micro_step=3880/global_step=1940, RunningAvgSamplesPerSec=12.294367966683168, CurrSamplesPerSec=12.86009034984407, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:29:19,558] [INFO] [logging.py:96:log_dist] [Rank 0] step=1950, skipped=38, lr=[0.00014928023922823442], mom=[(0.9, 0.95)]
[2023-04-19 18:29:19,558] [INFO] [timer.py:199:stop] epoch=0/micro_step=3900/global_step=1950, RunningAvgSamplesPerSec=12.29720127164094, CurrSamplesPerSec=12.879749164030441, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:29:45,078] [INFO] [logging.py:96:log_dist] [Rank 0] step=1960, skipped=38, lr=[0.00014493012960000785], mom=[(0.9, 0.95)]
[2023-04-19 18:29:45,079] [INFO] [timer.py:199:stop] epoch=0/micro_step=3920/global_step=1960, RunningAvgSamplesPerSec=12.298476526249685, CurrSamplesPerSec=12.867855376739639, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:30:10,380] [INFO] [logging.py:96:log_dist] [Rank 0] step=1970, skipped=38, lr=[0.0001406335758355134], mom=[(0.9, 0.95)]
[2023-04-19 18:30:10,380] [INFO] [timer.py:199:stop] epoch=0/micro_step=3940/global_step=1970, RunningAvgSamplesPerSec=12.300264143525318, CurrSamplesPerSec=12.820006808415691, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:30:35,732] [INFO] [logging.py:96:log_dist] [Rank 0] step=1980, skipped=38, lr=[0.00013639122599212533], mom=[(0.9, 0.95)]
[2023-04-19 18:30:35,733] [INFO] [timer.py:199:stop] epoch=0/micro_step=3960/global_step=1980, RunningAvgSamplesPerSec=12.301912515264485, CurrSamplesPerSec=12.802970659982275, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:31:01,381] [INFO] [logging.py:96:log_dist] [Rank 0] step=1990, skipped=38, lr=[0.00013220371995153736], mom=[(0.9, 0.95)]
[2023-04-19 18:31:01,382] [INFO] [timer.py:199:stop] epoch=0/micro_step=3980/global_step=1990, RunningAvgSamplesPerSec=12.302840564663645, CurrSamplesPerSec=11.593263562391549, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:31:26,506] [INFO] [logging.py:96:log_dist] [Rank 0] step=2000, skipped=38, lr=[0.00012807168932324857], mom=[(0.9, 0.95)]
[2023-04-19 18:31:26,506] [INFO] [timer.py:199:stop] epoch=0/micro_step=4000/global_step=2000, RunningAvgSamplesPerSec=12.304999928758503, CurrSamplesPerSec=12.715702879906292, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:31:52,481] [INFO] [logging.py:96:log_dist] [Rank 0] step=2010, skipped=38, lr=[0.0001239957573492957], mom=[(0.9, 0.95)]
[2023-04-19 18:31:52,481] [INFO] [timer.py:199:stop] epoch=0/micro_step=4020/global_step=2010, RunningAvgSamplesPerSec=12.305134776463118, CurrSamplesPerSec=12.599764184596898, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:32:17,970] [INFO] [logging.py:96:log_dist] [Rank 0] step=2020, skipped=38, lr=[0.00011997653881024884], mom=[(0.9, 0.95)]
[2023-04-19 18:32:17,971] [INFO] [timer.py:199:stop] epoch=0/micro_step=4040/global_step=2020, RunningAvgSamplesPerSec=12.306405867559443, CurrSamplesPerSec=12.496697285427834, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:32:44,382] [INFO] [logging.py:96:log_dist] [Rank 0] step=2030, skipped=38, lr=[0.0001160146399324833], mom=[(0.9, 0.95)]
[2023-04-19 18:32:44,383] [INFO] [timer.py:199:stop] epoch=0/micro_step=4060/global_step=2030, RunningAvgSamplesPerSec=12.305514093554024, CurrSamplesPerSec=12.39382407379021, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:33:07,621] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:33:10,518] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:33:10,518] [INFO] [logging.py:96:log_dist] [Rank 0] step=2040, skipped=40, lr=[0.00011288679285345288], mom=[(0.9, 0.95)]
[2023-04-19 18:33:10,518] [INFO] [timer.py:199:stop] epoch=0/micro_step=4080/global_step=2040, RunningAvgSamplesPerSec=12.305270434756762, CurrSamplesPerSec=11.058220762964236, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:33:36,786] [INFO] [logging.py:96:log_dist] [Rank 0] step=2050, skipped=40, lr=[0.0001090295694020207], mom=[(0.9, 0.95)]
[2023-04-19 18:33:36,786] [INFO] [timer.py:199:stop] epoch=0/micro_step=4100/global_step=2050, RunningAvgSamplesPerSec=12.304723993392827, CurrSamplesPerSec=12.338405292495112, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:34:02,975] [INFO] [logging.py:96:log_dist] [Rank 0] step=2060, skipped=40, lr=[0.00010523131676408154], mom=[(0.9, 0.95)]
[2023-04-19 18:34:02,975] [INFO] [timer.py:199:stop] epoch=0/micro_step=4120/global_step=2060, RunningAvgSamplesPerSec=12.304364466002099, CurrSamplesPerSec=12.451194702243312, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:34:29,152] [INFO] [logging.py:96:log_dist] [Rank 0] step=2070, skipped=40, lr=[0.00010149260783730319], mom=[(0.9, 0.95)]
[2023-04-19 18:34:29,153] [INFO] [timer.py:199:stop] epoch=0/micro_step=4140/global_step=2070, RunningAvgSamplesPerSec=12.304034186898377, CurrSamplesPerSec=12.411747026891463, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:34:55,549] [INFO] [logging.py:96:log_dist] [Rank 0] step=2080, skipped=40, lr=[9.781400653826244e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:34:55,550] [INFO] [timer.py:199:stop] epoch=0/micro_step=4160/global_step=2080, RunningAvgSamplesPerSec=12.303206574085898, CurrSamplesPerSec=12.411290230109326, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:35:21,383] [INFO] [logging.py:96:log_dist] [Rank 0] step=2090, skipped=40, lr=[9.419606771738853e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:35:21,383] [INFO] [timer.py:199:stop] epoch=0/micro_step=4180/global_step=2090, RunningAvgSamplesPerSec=12.30366604428486, CurrSamplesPerSec=12.406835355771703, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:35:47,968] [INFO] [logging.py:96:log_dist] [Rank 0] step=2100, skipped=40, lr=[9.063933707527306e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:35:47,968] [INFO] [timer.py:199:stop] epoch=0/micro_step=4200/global_step=2100, RunningAvgSamplesPerSec=12.302425094480283, CurrSamplesPerSec=12.383200007011915, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:36:13,793] [INFO] [logging.py:96:log_dist] [Rank 0] step=2110, skipped=40, lr=[8.714435108036234e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:36:13,794] [INFO] [timer.py:199:stop] epoch=0/micro_step=4220/global_step=2110, RunningAvgSamplesPerSec=12.302901308765746, CurrSamplesPerSec=12.434363708237937, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:36:40,308] [INFO] [logging.py:96:log_dist] [Rank 0] step=2120, skipped=40, lr=[8.371163688803967e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:36:40,308] [INFO] [timer.py:199:stop] epoch=0/micro_step=4240/global_step=2120, RunningAvgSamplesPerSec=12.301832484359094, CurrSamplesPerSec=12.420096949094322, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:37:06,496] [INFO] [logging.py:96:log_dist] [Rank 0] step=2130, skipped=40, lr=[8.034171226111403e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:37:06,497] [INFO] [timer.py:199:stop] epoch=0/micro_step=4260/global_step=2130, RunningAvgSamplesPerSec=12.301499367685778, CurrSamplesPerSec=10.856264810636182, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:37:32,691] [INFO] [logging.py:96:log_dist] [Rank 0] step=2140, skipped=40, lr=[7.703508549172528e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:37:32,691] [INFO] [timer.py:199:stop] epoch=0/micro_step=4280/global_step=2140, RunningAvgSamplesPerSec=12.30115622408466, CurrSamplesPerSec=12.401573479735115, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:37:35,215] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:37:37,759] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:37:58,792] [INFO] [logging.py:96:log_dist] [Rank 0] step=2150, skipped=42, lr=[7.443569401286737e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:37:58,792] [INFO] [timer.py:199:stop] epoch=0/micro_step=4300/global_step=2150, RunningAvgSamplesPerSec=12.30102199734571, CurrSamplesPerSec=12.400159610180129, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:38:24,948] [INFO] [logging.py:96:log_dist] [Rank 0] step=2160, skipped=42, lr=[7.124425376007727e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:38:24,948] [INFO] [timer.py:199:stop] epoch=0/micro_step=4320/global_step=2160, RunningAvgSamplesPerSec=12.300768461536611, CurrSamplesPerSec=12.453067368968957, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:38:51,245] [INFO] [logging.py:96:log_dist] [Rank 0] step=2170, skipped=42, lr=[6.811748355178887e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:38:51,245] [INFO] [timer.py:199:stop] epoch=0/micro_step=4340/global_step=2170, RunningAvgSamplesPerSec=12.300209402649584, CurrSamplesPerSec=12.43781132701424, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:39:17,070] [INFO] [logging.py:96:log_dist] [Rank 0] step=2180, skipped=42, lr=[6.505585500469818e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:39:17,071] [INFO] [timer.py:199:stop] epoch=0/micro_step=4360/global_step=2180, RunningAvgSamplesPerSec=12.300679290112301, CurrSamplesPerSec=12.365838971239125, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:39:43,643] [INFO] [logging.py:96:log_dist] [Rank 0] step=2190, skipped=42, lr=[6.205982991006093e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:39:43,643] [INFO] [timer.py:199:stop] epoch=0/micro_step=4380/global_step=2190, RunningAvgSamplesPerSec=12.299530650271372, CurrSamplesPerSec=12.405328558682902, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:40:09,493] [INFO] [logging.py:96:log_dist] [Rank 0] step=2200, skipped=42, lr=[5.912986016403909e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:40:09,494] [INFO] [timer.py:199:stop] epoch=0/micro_step=4400/global_step=2200, RunningAvgSamplesPerSec=12.299945811894498, CurrSamplesPerSec=12.441138616114486, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:40:36,096] [INFO] [logging.py:96:log_dist] [Rank 0] step=2210, skipped=42, lr=[5.6266387699540786e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:40:36,097] [INFO] [timer.py:199:stop] epoch=0/micro_step=4420/global_step=2210, RunningAvgSamplesPerSec=12.298745310472013, CurrSamplesPerSec=12.415833295329127, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:41:02,293] [INFO] [logging.py:96:log_dist] [Rank 0] step=2220, skipped=42, lr=[5.346984441956315e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:41:02,293] [INFO] [timer.py:199:stop] epoch=0/micro_step=4440/global_step=2220, RunningAvgSamplesPerSec=12.298422423831754, CurrSamplesPerSec=12.331312379976227, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:41:28,489] [INFO] [logging.py:96:log_dist] [Rank 0] step=2230, skipped=42, lr=[5.074065213204676e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:41:28,490] [INFO] [timer.py:199:stop] epoch=0/micro_step=4460/global_step=2230, RunningAvgSamplesPerSec=12.298102818031259, CurrSamplesPerSec=12.428839061774376, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:41:54,606] [INFO] [logging.py:96:log_dist] [Rank 0] step=2240, skipped=42, lr=[4.8079222486253736e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:41:54,607] [INFO] [timer.py:199:stop] epoch=0/micro_step=4480/global_step=2240, RunningAvgSamplesPerSec=12.297953704777502, CurrSamplesPerSec=12.434558392459168, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:42:02,610] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:42:05,144] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:42:20,545] [INFO] [logging.py:96:log_dist] [Rank 0] step=2250, skipped=44, lr=[4.599913797658045e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:42:20,546] [INFO] [timer.py:199:stop] epoch=0/micro_step=4500/global_step=2250, RunningAvgSamplesPerSec=12.298179937217506, CurrSamplesPerSec=12.529763874087092, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:42:46,846] [INFO] [logging.py:96:log_dist] [Rank 0] step=2260, skipped=44, lr=[4.346068577864587e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:42:46,846] [INFO] [timer.py:199:stop] epoch=0/micro_step=4520/global_step=2260, RunningAvgSamplesPerSec=12.29764823685467, CurrSamplesPerSec=12.45570692530282, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:43:12,672] [INFO] [logging.py:96:log_dist] [Rank 0] step=2270, skipped=44, lr=[4.099109427360304e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:43:12,672] [INFO] [timer.py:199:stop] epoch=0/micro_step=4540/global_step=2270, RunningAvgSamplesPerSec=12.298109115305559, CurrSamplesPerSec=12.437736408563667, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:43:38,689] [INFO] [logging.py:96:log_dist] [Rank 0] step=2280, skipped=44, lr=[3.859073595463469e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:43:38,690] [INFO] [timer.py:199:stop] epoch=0/micro_step=4560/global_step=2280, RunningAvgSamplesPerSec=12.298170178178243, CurrSamplesPerSec=12.75117692923243, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:44:03,731] [INFO] [logging.py:96:log_dist] [Rank 0] step=2290, skipped=44, lr=[3.6259972872350666e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:44:03,732] [INFO] [timer.py:199:stop] epoch=0/micro_step=4580/global_step=2290, RunningAvgSamplesPerSec=12.300246104187035, CurrSamplesPerSec=12.824455816125798, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:44:29,392] [INFO] [logging.py:96:log_dist] [Rank 0] step=2300, skipped=44, lr=[3.399915658017838e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:44:29,392] [INFO] [timer.py:199:stop] epoch=0/micro_step=4600/global_step=2300, RunningAvgSamplesPerSec=12.301030032165718, CurrSamplesPerSec=12.871611794362979, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:44:54,682] [INFO] [logging.py:96:log_dist] [Rank 0] step=2310, skipped=44, lr=[3.1808628081338496e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:44:54,682] [INFO] [timer.py:199:stop] epoch=0/micro_step=4620/global_step=2310, RunningAvgSamplesPerSec=12.302568709380266, CurrSamplesPerSec=12.835298490770182, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:45:19,976] [INFO] [logging.py:96:log_dist] [Rank 0] step=2320, skipped=44, lr=[2.9688717777409667e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:45:19,976] [INFO] [timer.py:199:stop] epoch=0/micro_step=4640/global_step=2320, RunningAvgSamplesPerSec=12.304085416510999, CurrSamplesPerSec=12.840191724087525, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:45:45,627] [INFO] [logging.py:96:log_dist] [Rank 0] step=2330, skipped=44, lr=[2.7639745418494234e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:45:45,627] [INFO] [timer.py:199:stop] epoch=0/micro_step=4660/global_step=2330, RunningAvgSamplesPerSec=12.304862619859534, CurrSamplesPerSec=11.164547013836554, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:46:10,564] [INFO] [logging.py:96:log_dist] [Rank 0] step=2340, skipped=44, lr=[2.5662020054989298e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:46:10,564] [INFO] [timer.py:199:stop] epoch=0/micro_step=4680/global_step=2340, RunningAvgSamplesPerSec=12.307078782682758, CurrSamplesPerSec=12.811729488667604, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:46:23,358] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:46:25,838] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:46:36,126] [INFO] [logging.py:96:log_dist] [Rank 0] step=2350, skipped=46, lr=[2.413133842345444e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:46:36,126] [INFO] [timer.py:199:stop] epoch=0/micro_step=4700/global_step=2350, RunningAvgSamplesPerSec=12.308017841166846, CurrSamplesPerSec=12.765987834726452, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:47:01,158] [INFO] [logging.py:96:log_dist] [Rank 0] step=2360, skipped=46, lr=[2.2282602127670638e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:47:01,159] [INFO] [timer.py:199:stop] epoch=0/micro_step=4720/global_step=2360, RunningAvgSamplesPerSec=12.310010809005004, CurrSamplesPerSec=12.779279202937284, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:47:27,031] [INFO] [logging.py:96:log_dist] [Rank 0] step=2370, skipped=46, lr=[2.0505920855406757e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:47:27,032] [INFO] [timer.py:199:stop] epoch=0/micro_step=4740/global_step=2370, RunningAvgSamplesPerSec=12.310307228959495, CurrSamplesPerSec=12.691875719261018, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:47:52,702] [INFO] [logging.py:96:log_dist] [Rank 0] step=2380, skipped=46, lr=[1.8801562586877375e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:47:52,702] [INFO] [timer.py:199:stop] epoch=0/micro_step=4760/global_step=2380, RunningAvgSamplesPerSec=12.311004314974385, CurrSamplesPerSec=11.0915473904342, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:48:18,609] [INFO] [logging.py:96:log_dist] [Rank 0] step=2390, skipped=46, lr=[1.7169784393681164e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:48:18,610] [INFO] [timer.py:199:stop] epoch=0/micro_step=4780/global_step=2390, RunningAvgSamplesPerSec=12.311227600222733, CurrSamplesPerSec=12.524098052787979, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:48:44,677] [INFO] [logging.py:96:log_dist] [Rank 0] step=2400, skipped=46, lr=[1.561083240002592e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:48:44,678] [INFO] [timer.py:199:stop] epoch=0/micro_step=4800/global_step=2400, RunningAvgSamplesPerSec=12.311130099979922, CurrSamplesPerSec=12.407947914210096, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:49:10,952] [INFO] [logging.py:96:log_dist] [Rank 0] step=2410, skipped=46, lr=[1.4124941745605024e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:49:10,952] [INFO] [timer.py:199:stop] epoch=0/micro_step=4820/global_step=2410, RunningAvgSamplesPerSec=12.310627790060659, CurrSamplesPerSec=12.370306632484153, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:49:37,487] [INFO] [logging.py:96:log_dist] [Rank 0] step=2420, skipped=46, lr=[1.2712336550131598e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:49:37,487] [INFO] [timer.py:199:stop] epoch=0/micro_step=4840/global_step=2420, RunningAvgSamplesPerSec=12.309618788598172, CurrSamplesPerSec=10.852950064021522, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:50:03,211] [INFO] [logging.py:96:log_dist] [Rank 0] step=2430, skipped=46, lr=[1.1373229879533375e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:50:03,211] [INFO] [timer.py:199:stop] epoch=0/micro_step=4860/global_step=2430, RunningAvgSamplesPerSec=12.310200725412857, CurrSamplesPerSec=12.48376864028326, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:50:29,508] [INFO] [logging.py:96:log_dist] [Rank 0] step=2440, skipped=46, lr=[1.010782371381569e-05], mom=[(0.9, 0.95)]
[2023-04-19 18:50:29,508] [INFO] [timer.py:199:stop] epoch=0/micro_step=4880/global_step=2440, RunningAvgSamplesPerSec=12.309663735759242, CurrSamplesPerSec=12.454816932342066, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:50:47,517] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:50:50,067] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:50:55,269] [INFO] [logging.py:96:log_dist] [Rank 0] step=2450, skipped=48, lr=[9.14869177936145e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:50:55,269] [INFO] [timer.py:199:stop] epoch=0/micro_step=4900/global_step=2450, RunningAvgSamplesPerSec=12.31016926218093, CurrSamplesPerSec=12.382171843136206, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:51:21,646] [INFO] [logging.py:96:log_dist] [Rank 0] step=2460, skipped=48, lr=[8.016420010113156e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:51:21,647] [INFO] [timer.py:199:stop] epoch=0/micro_step=4920/global_step=2460, RunningAvgSamplesPerSec=12.309482308619254, CurrSamplesPerSec=12.48385456463192, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:51:47,716] [INFO] [logging.py:96:log_dist] [Rank 0] step=2470, skipped=48, lr=[6.958355059761279e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:51:47,717] [INFO] [timer.py:199:stop] epoch=0/micro_step=4940/global_step=2470, RunningAvgSamplesPerSec=12.309390904770943, CurrSamplesPerSec=12.388855674772541, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:52:13,820] [INFO] [logging.py:96:log_dist] [Rank 0] step=2480, skipped=48, lr=[5.974656518254129e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:52:13,820] [INFO] [timer.py:199:stop] epoch=0/micro_step=4960/global_step=2480, RunningAvgSamplesPerSec=12.309235890996996, CurrSamplesPerSec=12.403854224243707, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:52:40,021] [INFO] [logging.py:96:log_dist] [Rank 0] step=2490, skipped=48, lr=[5.06547275871333e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:52:40,021] [INFO] [timer.py:199:stop] epoch=0/micro_step=4980/global_step=2490, RunningAvgSamplesPerSec=12.308896336184107, CurrSamplesPerSec=12.31674295094959, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:53:06,296] [INFO] [logging.py:96:log_dist] [Rank 0] step=2500, skipped=48, lr=[4.23094091505416e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:53:06,297] [INFO] [timer.py:199:stop] epoch=0/micro_step=5000/global_step=2500, RunningAvgSamplesPerSec=12.30841818692135, CurrSamplesPerSec=12.305871454185846, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:53:32,845] [INFO] [logging.py:96:log_dist] [Rank 0] step=2510, skipped=48, lr=[3.471186861301545e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:53:32,846] [INFO] [timer.py:199:stop] epoch=0/micro_step=5020/global_step=2510, RunningAvgSamplesPerSec=12.307428673506953, CurrSamplesPerSec=12.437062183120354, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:53:58,554] [INFO] [logging.py:96:log_dist] [Rank 0] step=2520, skipped=48, lr=[2.7863251926040224e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:53:58,554] [INFO] [timer.py:199:stop] epoch=0/micro_step=5040/global_step=2520, RunningAvgSamplesPerSec=12.308026366186626, CurrSamplesPerSec=12.448089466013181, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:54:24,848] [INFO] [logging.py:96:log_dist] [Rank 0] step=2530, skipped=48, lr=[2.1764592079493996e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:54:24,848] [INFO] [timer.py:199:stop] epoch=0/micro_step=5060/global_step=2530, RunningAvgSamplesPerSec=12.307524238014608, CurrSamplesPerSec=12.462064247476162, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:54:50,593] [INFO] [logging.py:96:log_dist] [Rank 0] step=2540, skipped=48, lr=[1.6416808945838302e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:54:50,593] [INFO] [timer.py:199:stop] epoch=0/micro_step=5080/global_step=2540, RunningAvgSamplesPerSec=12.308049471202695, CurrSamplesPerSec=12.400358953137731, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
[2023-04-19 18:55:14,484] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, but hysteresis is 2. Reducing hysteresis to 1
[2023-04-19 18:55:17,038] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 131072, reducing to 65536
[2023-04-19 18:55:17,039] [INFO] [logging.py:96:log_dist] [Rank 0] step=2550, skipped=50, lr=[1.2679759526949552e-06], mom=[(0.9, 0.95)]
[2023-04-19 18:55:17,039] [INFO] [timer.py:199:stop] epoch=0/micro_step=5100/global_step=2550, RunningAvgSamplesPerSec=12.307268386762189, CurrSamplesPerSec=12.540417228668503, MemAllocated=1.95GB, MaxMemAllocated=13.62GB
***** Evaluating perplexity, Epoch 1/1 *****
Invalidate trace cache @ step 0: expected module 0, but got module 16
ppl: 1.6646381616592407
saving the final model ...
[2023-04-19 19:03:02,394] [INFO] [launch.py:460:main] Process 10813 exits successfully.
[2023-04-19 19:03:02,395] [INFO] [launch.py:460:main] Process 10814 exits successfully.
[2023-04-19 19:03:02,395] [INFO] [launch.py:460:main] Process 10815 exits successfully.
[2023-04-19 19:03:14,408] [INFO] [launch.py:460:main] Process 10812 exits successfully.
|