imvladikon commited on
Commit
a12a6ae
1 Parent(s): bedf767

iahlt/span-marker-xlm-roberta-base-nemo-mt-he

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ datasets:
10
+ - imvladikon/nemo_corpus
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ widget:
16
+ - text: אלי ויזל, פרופסור ב אוניברסיטת בוסטון, ש סילבר התאמץ הרבה למען זכייתו ב פרס
17
+ נובל ל שלום, תמך בגלוי ב מועמדותו ל משרת ה מושל.
18
+ - text: מאמרו של תום שגב, " ה קרב על סן סימון היה או לא היה " (" ה ארץ " 105), הגיע
19
+ ל ידי רק ב ימים אלה.
20
+ - text: 'רק ב דבריו של ה רב אברהם טולדאנו, משגיח ב ישיבת ה רעיון ה יהודי ו מספר 4
21
+ ב רשימת כך ל ה כנסת, היו כבר הוראות מעשיות: " אלוקים ייקום דמו ו אנו ניקום את
22
+ הוא.'
23
+ - text: מרכז ה מידע ל זכויות ה אדם ב ה שטחים, " בצלם ", מפרסם מ פעם ל פעם דפי מידע
24
+ ו ב המ פרטים על ה נעשה ב ה שטחים ב תחומים שונים.
25
+ - text: גרוסבורד נהג לבדו ב ה מכונית, ב דרכו מ ה עיר מיניאפוליס ב אינדיאנה ל נמל ה
26
+ תעופה של היא.
27
+ pipeline_tag: token-classification
28
+ model-index:
29
+ - name: SpanMarker
30
+ results:
31
+ - task:
32
+ type: token-classification
33
+ name: Named Entity Recognition
34
+ dataset:
35
+ name: Unknown
36
+ type: imvladikon/nemo_corpus
37
+ split: test
38
+ metrics:
39
+ - type: f1
40
+ value: 0.7757111597374179
41
+ name: F1
42
+ - type: precision
43
+ value: 0.7912946428571429
44
+ name: Precision
45
+ - type: recall
46
+ value: 0.7607296137339056
47
+ name: Recall
48
+ ---
49
+
50
+ # SpanMarker
51
+
52
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [imvladikon/nemo_corpus](https://huggingface.co/datasets/imvladikon/nemo_corpus) dataset that can be used for Named Entity Recognition.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** SpanMarker
58
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
59
+ - **Maximum Sequence Length:** 512 tokens
60
+ - **Maximum Entity Length:** 100 words
61
+ - **Training Dataset:** [imvladikon/nemo_corpus](https://huggingface.co/datasets/imvladikon/nemo_corpus)
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
68
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
69
+
70
+ ### Model Labels
71
+ | Label | Examples |
72
+ |:------|:------------------------------------------------|
73
+ | ANG | "יידיש", "אנגלית", "גרמנית" |
74
+ | DUC | "סובארו", "מרצדס", "דינמיט" |
75
+ | EVE | "מצדה", "הצהרת בלפור", "ה שואה" |
76
+ | FAC | "ברזילי", "תל - ה שומר", "כלא עזה" |
77
+ | GPE | "שפרעם", "רצועת עזה", "ה שטחים" |
78
+ | LOC | "חאן יונס", "גיבאליה", "שייח רדואן" |
79
+ | ORG | "ה ארץ", "מרחב ה גליל", "כך" |
80
+ | PER | "נימר חוסיין", "איברהים נימר חוסיין", "רמי רהב" |
81
+ | WOA | "ה ארץ", "קדיש", "קיטש ו מוות" |
82
+
83
+ ## Evaluation
84
+
85
+ ### Metrics
86
+ | Label | Precision | Recall | F1 |
87
+ |:--------|:----------|:-------|:-------|
88
+ | **all** | 0.7913 | 0.7607 | 0.7757 |
89
+ | ANG | 0.0 | 0.0 | 0.0 |
90
+ | DUC | 0.0 | 0.0 | 0.0 |
91
+ | FAC | 0.3571 | 0.4545 | 0.4 |
92
+ | GPE | 0.7817 | 0.7897 | 0.7857 |
93
+ | LOC | 0.5263 | 0.4878 | 0.5063 |
94
+ | ORG | 0.7854 | 0.7623 | 0.7736 |
95
+ | PER | 0.8725 | 0.8202 | 0.8456 |
96
+ | WOA | 0.0 | 0.0 | 0.0 |
97
+
98
+ ## Uses
99
+
100
+ ### Direct Use for Inference
101
+
102
+ ```python
103
+ from span_marker import SpanMarkerModel
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
107
+ # Run inference
108
+ entities = model.predict("גרוסבורד נהג לבדו ב ה מכונית, ב דרכו מ ה עיר מיניאפוליס ב אינדיאנה ל נמל ה תעופה של היא.")
109
+ ```
110
+
111
+ ### Downstream Use
112
+ You can finetune this model on your own dataset.
113
+
114
+ <details><summary>Click to expand</summary>
115
+
116
+ ```python
117
+ from span_marker import SpanMarkerModel, Trainer
118
+
119
+ # Download from the 🤗 Hub
120
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
121
+
122
+ # Specify a Dataset with "tokens" and "ner_tag" columns
123
+ dataset = load_dataset("conll2003") # For example CoNLL2003
124
+
125
+ # Initialize a Trainer using the pretrained model & dataset
126
+ trainer = Trainer(
127
+ model=model,
128
+ train_dataset=dataset["train"],
129
+ eval_dataset=dataset["validation"],
130
+ )
131
+ trainer.train()
132
+ trainer.save_model("span_marker_model_id-finetuned")
133
+ ```
134
+ </details>
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Set Metrics
157
+ | Training set | Min | Median | Max |
158
+ |:----------------------|:----|:--------|:----|
159
+ | Sentence length | 0 | 25.7252 | 117 |
160
+ | Entities per sentence | 0 | 1.2722 | 20 |
161
+
162
+ ### Training Hyperparameters
163
+ - learning_rate: 1e-05
164
+ - train_batch_size: 2
165
+ - eval_batch_size: 2
166
+ - seed: 42
167
+ - gradient_accumulation_steps: 2
168
+ - total_train_batch_size: 4
169
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
170
+ - lr_scheduler_type: linear
171
+ - lr_scheduler_warmup_ratio: 0.1
172
+ - num_epochs: 2
173
+ - mixed_precision_training: Native AMP
174
+
175
+ ### Training Results
176
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
177
+ |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
178
+ | 0.4393 | 1000 | 0.0083 | 0.7632 | 0.5812 | 0.6598 | 0.9477 |
179
+ | 0.8785 | 2000 | 0.0056 | 0.8366 | 0.6774 | 0.7486 | 0.9609 |
180
+ | 1.3178 | 3000 | 0.0052 | 0.8322 | 0.7655 | 0.7975 | 0.9714 |
181
+ | 1.7571 | 4000 | 0.0053 | 0.8008 | 0.7735 | 0.7870 | 0.9712 |
182
+
183
+ ### Framework Versions
184
+ - Python: 3.10.12
185
+ - SpanMarker: 1.5.0
186
+ - Transformers: 4.35.2
187
+ - PyTorch: 2.1.0+cu118
188
+ - Datasets: 2.15.0
189
+ - Tokenizers: 0.15.0
190
+
191
+ ## Citation
192
+
193
+ ### BibTeX
194
+ ```
195
+ @software{Aarsen_SpanMarker,
196
+ author = {Aarsen, Tom},
197
+ license = {Apache-2.0},
198
+ title = {{SpanMarker for Named Entity Recognition}},
199
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
200
+ }
201
+ ```
202
+
203
+ <!--
204
+ ## Glossary
205
+
206
+ *Clearly define terms in order to be accessible across audiences.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Authors
211
+
212
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Contact
217
+
218
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
219
+ -->
config.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "xlm-roberta-base",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "XLMRobertaForMaskedLM"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "S-ANG",
33
+ "1": "B-ANG",
34
+ "2": "I-ANG",
35
+ "3": "E-ANG",
36
+ "4": "S-DUC",
37
+ "5": "B-DUC",
38
+ "6": "I-DUC",
39
+ "7": "E-DUC",
40
+ "8": "B-EVE",
41
+ "9": "E-EVE",
42
+ "10": "S-EVE",
43
+ "11": "I-EVE",
44
+ "12": "S-FAC",
45
+ "13": "B-FAC",
46
+ "14": "E-FAC",
47
+ "15": "I-FAC",
48
+ "16": "S-GPE",
49
+ "17": "B-GPE",
50
+ "18": "E-GPE",
51
+ "19": "I-GPE",
52
+ "20": "S-LOC",
53
+ "21": "B-LOC",
54
+ "22": "E-LOC",
55
+ "23": "I-LOC",
56
+ "24": "O",
57
+ "25": "S-ORG",
58
+ "26": "B-ORG",
59
+ "27": "E-ORG",
60
+ "28": "I-ORG",
61
+ "29": "B-PER",
62
+ "30": "I-PER",
63
+ "31": "E-PER",
64
+ "32": "S-PER",
65
+ "33": "B-WOA",
66
+ "34": "E-WOA",
67
+ "35": "I-WOA",
68
+ "36": "S-WOA"
69
+ },
70
+ "initializer_range": 0.02,
71
+ "intermediate_size": 3072,
72
+ "is_decoder": false,
73
+ "is_encoder_decoder": false,
74
+ "label2id": {
75
+ "B-ANG": 1,
76
+ "B-DUC": 5,
77
+ "B-EVE": 8,
78
+ "B-FAC": 13,
79
+ "B-GPE": 17,
80
+ "B-LOC": 21,
81
+ "B-ORG": 26,
82
+ "B-PER": 29,
83
+ "B-WOA": 33,
84
+ "E-ANG": 3,
85
+ "E-DUC": 7,
86
+ "E-EVE": 9,
87
+ "E-FAC": 14,
88
+ "E-GPE": 18,
89
+ "E-LOC": 22,
90
+ "E-ORG": 27,
91
+ "E-PER": 31,
92
+ "E-WOA": 34,
93
+ "I-ANG": 2,
94
+ "I-DUC": 6,
95
+ "I-EVE": 11,
96
+ "I-FAC": 15,
97
+ "I-GPE": 19,
98
+ "I-LOC": 23,
99
+ "I-ORG": 28,
100
+ "I-PER": 30,
101
+ "I-WOA": 35,
102
+ "O": 24,
103
+ "S-ANG": 0,
104
+ "S-DUC": 4,
105
+ "S-EVE": 10,
106
+ "S-FAC": 12,
107
+ "S-GPE": 16,
108
+ "S-LOC": 20,
109
+ "S-ORG": 25,
110
+ "S-PER": 32,
111
+ "S-WOA": 36
112
+ },
113
+ "layer_norm_eps": 1e-05,
114
+ "length_penalty": 1.0,
115
+ "max_length": 20,
116
+ "max_position_embeddings": 514,
117
+ "min_length": 0,
118
+ "model_type": "xlm-roberta",
119
+ "no_repeat_ngram_size": 0,
120
+ "num_attention_heads": 12,
121
+ "num_beam_groups": 1,
122
+ "num_beams": 1,
123
+ "num_hidden_layers": 12,
124
+ "num_return_sequences": 1,
125
+ "output_attentions": false,
126
+ "output_hidden_states": false,
127
+ "output_past": true,
128
+ "output_scores": false,
129
+ "pad_token_id": 1,
130
+ "position_embedding_type": "absolute",
131
+ "prefix": null,
132
+ "problem_type": null,
133
+ "pruned_heads": {},
134
+ "remove_invalid_values": false,
135
+ "repetition_penalty": 1.0,
136
+ "return_dict": true,
137
+ "return_dict_in_generate": false,
138
+ "sep_token_id": null,
139
+ "suppress_tokens": null,
140
+ "task_specific_params": null,
141
+ "temperature": 1.0,
142
+ "tf_legacy_loss": false,
143
+ "tie_encoder_decoder": false,
144
+ "tie_word_embeddings": true,
145
+ "tokenizer_class": null,
146
+ "top_k": 50,
147
+ "top_p": 1.0,
148
+ "torch_dtype": null,
149
+ "torchscript": false,
150
+ "transformers_version": "4.35.2",
151
+ "type_vocab_size": 1,
152
+ "typical_p": 1.0,
153
+ "use_bfloat16": false,
154
+ "use_cache": true,
155
+ "vocab_size": 250008
156
+ },
157
+ "entity_max_length": 100,
158
+ "id2label": {
159
+ "0": "O",
160
+ "1": "ANG",
161
+ "2": "DUC",
162
+ "3": "EVE",
163
+ "4": "FAC",
164
+ "5": "GPE",
165
+ "6": "LOC",
166
+ "7": "ORG",
167
+ "8": "PER",
168
+ "9": "WOA"
169
+ },
170
+ "id2reduced_id": {
171
+ "0": 1,
172
+ "1": 1,
173
+ "2": 1,
174
+ "3": 1,
175
+ "4": 2,
176
+ "5": 2,
177
+ "6": 2,
178
+ "7": 2,
179
+ "8": 3,
180
+ "9": 3,
181
+ "10": 3,
182
+ "11": 3,
183
+ "12": 4,
184
+ "13": 4,
185
+ "14": 4,
186
+ "15": 4,
187
+ "16": 5,
188
+ "17": 5,
189
+ "18": 5,
190
+ "19": 5,
191
+ "20": 6,
192
+ "21": 6,
193
+ "22": 6,
194
+ "23": 6,
195
+ "24": 0,
196
+ "25": 7,
197
+ "26": 7,
198
+ "27": 7,
199
+ "28": 7,
200
+ "29": 8,
201
+ "30": 8,
202
+ "31": 8,
203
+ "32": 8,
204
+ "33": 9,
205
+ "34": 9,
206
+ "35": 9,
207
+ "36": 9
208
+ },
209
+ "label2id": {
210
+ "ANG": 1,
211
+ "DUC": 2,
212
+ "EVE": 3,
213
+ "FAC": 4,
214
+ "GPE": 5,
215
+ "LOC": 6,
216
+ "O": 0,
217
+ "ORG": 7,
218
+ "PER": 8,
219
+ "WOA": 9
220
+ },
221
+ "marker_max_length": 128,
222
+ "max_next_context": null,
223
+ "max_prev_context": null,
224
+ "model_max_length": 512,
225
+ "model_max_length_default": 512,
226
+ "model_type": "span-marker",
227
+ "span_marker_version": "1.5.0",
228
+ "torch_dtype": "float32",
229
+ "trained_with_document_context": false,
230
+ "transformers_version": "4.35.2",
231
+ "vocab_size": 250008
232
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60732832ca9c07657a10f693e91dc5b17a9c574852563fc8e0ad1945747dca1
3
+ size 1112278752
runs/Nov23_21-20-07_4396e9f2dcc0/events.out.tfevents.1700774504.4396e9f2dcc0.361.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:229b8eec5da05336d27c3fd738664582dd440204693fedce72b19b852cd0ea59
3
+ size 25043
runs/Nov23_21-20-07_4396e9f2dcc0/events.out.tfevents.1700776686.4396e9f2dcc0.361.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90842207ca92e239a7270fa7626dabba272b86c40cbd9181a88eed4948c321d
3
+ size 1096
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0898477c2e1c55b21fd4fdfce81f2e2bbf7eda740fa9fe21ef23cb36a315ac82
3
+ size 17083583
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "250001": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "250002": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "250003": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 100,
65
+ "eos_token": "</s>",
66
+ "mask_token": "<mask>",
67
+ "model_max_length": 512,
68
+ "pad_token": "<pad>",
69
+ "sep_token": "</s>",
70
+ "tokenizer_class": "XLMRobertaTokenizer",
71
+ "unk_token": "<unk>"
72
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a9d21735f4f9034cb10f472f4d832aeeb1ba3275fdf590b939e971223d4fbd
3
+ size 4600