# %% import os import torch from PIL import Image from einops import rearrange, repeat import numpy as np import torch import torch.nn.functional as F # align_weights = torch.load("align_weights.pth") from torch import nn from alignedthreeattn_backbone import CLIPAttnNode, DiNOv2AttnNode, MAEAttnNode class ThreeAttnNodes(nn.Module): def __init__(self, align_weights): super().__init__() self.backbone1 = CLIPAttnNode() self.backbone2 = DiNOv2AttnNode() self.backbone3 = MAEAttnNode() for backbone in [self.backbone1, self.backbone2, self.backbone3]: backbone.requires_grad_(False) backbone.eval() # def resample_position_embeddings(embeddings, h, w): # cls_embeddings = embeddings[0] # patch_embeddings = embeddings[1:] # [14*14, 768] # hw = np.sqrt(patch_embeddings.shape[0]).astype(int) # patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw) # patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0) # patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c") # embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0) # return embeddings # pos_embd = self.backbone1.model.visual.positional_embedding # pos_embd = resample_position_embeddings(pos_embd, 42, 42) # self.backbone1.model.visual.positional_embedding = nn.Parameter(pos_embd) # pos_embed = self.backbone3.model.pos_embed[0] # pos_embed = resample_position_embeddings(pos_embed, 42, 42) # self.backbone3.model.pos_embed = nn.Parameter(pos_embed.unsqueeze(0)) # self.backbone3.model.img_size = (672, 672) # self.backbone3.model.patch_embed.img_size = (672, 672) self.align_weights = nn.Parameter(align_weights) @torch.no_grad() def forward(self, x): # resize x to 672x672 # x = F.interpolate(x, size=(672, 672), mode="bilinear") x = F.interpolate(x, size=(224, 224), mode="bilinear") feat1 = self.backbone1(x) feat3 = self.backbone3(x) # resize x to 588x588 # x = F.interpolate(x, size=(588, 588), mode="bilinear") x = F.interpolate(x, size=(196, 196), mode="bilinear") feat2 = self.backbone2(x) feats = torch.cat([feat1, feat2, feat3], dim=1) # out = torch.einsum("b l p i, l o i -> b l p o", feats, self.align_weights) outs = [] for i_layer in range(36): out = torch.einsum("b p i, o i -> b p o", feats[:, i_layer], self.align_weights[i_layer]) outs.append(out) out = torch.stack(outs, dim=1) hw = np.sqrt(out.shape[2]-1).astype(int) out = rearrange(out[:, :, 1:], "b l (h w) o -> b l h w o", h=hw, w=hw) return out