from collections import OrderedDict import math from typing import Callable, Optional, Sequence, Tuple, Text import torch from torch import nn from torch.nn import functional as F from torch.utils.checkpoint import checkpoint import numbers import einops import numpy as np from utils.misc import to_2tuple from utils.hook import HookManager class LayerNorm(nn.Module): """Subclass torch's LayerNorm (with cast back to input dtype).""" def __init__( self, normalized_shape, eps: float = 1e-5, elementwise_affine: bool = True, device=None, dtype=None, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = torch.nn.Parameter( torch.empty( self.normalized_shape, ) ) self.bias = torch.nn.Parameter( torch.empty( self.normalized_shape, ) ) else: self.register_parameter("weight", None) self.register_parameter("bias", None) def forward(self, x: torch.Tensor): orig_type = x.dtype assert self.normalized_shape == x.shape[-len(self.normalized_shape) :] dims = [-(i + 1) for i in range(len(self.normalized_shape))] mean = self.hook("mean", ret=x.mean(dim=dims, keepdim=True)) mean_x2 = (x**2).mean(dim=dims, keepdim=True) var = mean_x2 - mean**2 x_norm = self.hook("mean_reduced", ret=(x - mean)) / self.hook( "sqrt_var", ret=torch.sqrt(var + self.eps) ) if self.elementwise_affine: x_norm = self.hook("renorm.post", ret=self.weight * x_norm + self.bias) self.hook.finalize() return x_norm.to(orig_type) class QuickGELU(nn.Module): # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): raise ValueError("Not implemented") return x.mul_(self.gamma) if self.inplace else x * self.gamma class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ def __init__(self, prob, exclude_first_token=True): super().__init__() assert 0 <= prob < 1.0 self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token def forward(self, x): if not self.training or self.prob == 0.0: return x if self.exclude_first_token: cls_tokens, x = x[:, :1], x[:, 1:] else: cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) batch = x.size()[0] num_tokens = x.size()[1] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] keep_prob = 1 - self.prob num_patches_keep = max(1, int(num_tokens * keep_prob)) rand = torch.randn(batch, num_tokens) patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices x = x[batch_indices, patch_indices_keep] if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=True, scaled_cosine=False, scale_heads=False, logit_scale_max=math.log(1.0 / 0.01), attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.logit_scale_max = logit_scale_max # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) if qkv_bias: self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) else: self.in_proj_bias = None if self.scaled_cosine: self.logit_scale = nn.Parameter( torch.log(10 * torch.ones((num_heads, 1, 1))) ) else: self.logit_scale = None self.attn_drop = nn.Dropout(attn_drop) if self.scale_heads: self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) else: self.head_scale = None self.out_proj = nn.Linear(dim, dim) self.out_drop = nn.Dropout(proj_drop) def forward(self, x, attn_mask: Optional[torch.Tensor] = None): L, N, C = x.shape q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) if self.logit_scale is not None: attn = torch.bmm( F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2) ) logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() attn = attn.view(N, self.num_heads, L, L) * logit_scale attn = attn.view(-1, L, L) else: q = q * self.scale attn = torch.bmm(q, k.transpose(-1, -2)) if attn_mask is not None: if attn_mask.dtype == torch.bool: new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) new_attn_mask.masked_fill_(attn_mask, float("-inf")) attn_mask = new_attn_mask attn += attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = torch.bmm(attn, v) if self.head_scale is not None: x = x.view(N, self.num_heads, L, C) * self.head_scale x = x.view(-1, L, C) x = x.transpose(0, 1).reshape(L, N, C) x = self.out_proj(x) x = self.out_drop(x) return x class AttentionalPooler(nn.Module): def __init__( self, d_model: int, context_dim: int, n_head: int = 8, n_queries: int = 256, norm_layer: Callable = LayerNorm, ): super().__init__() self.query = nn.Parameter(torch.randn(n_queries, d_model)) self.attn = nn.MultiheadAttention( d_model, n_head, kdim=context_dim, vdim=context_dim ) self.ln_q = norm_layer(d_model) self.ln_k = norm_layer(context_dim) def forward(self, x: torch.Tensor): x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND N = x.shape[1] q = self.ln_q(self.query) out = self.attn(self._repeat(q, N), x, x, need_weights=False)[0] return out.permute(1, 0, 2) # LND -> NLD def _repeat(self, query, N: int): return query.unsqueeze(1).repeat(1, N, 1) class MLP(nn.Module): def __init__( self, d_model: int, mlp_width: int, act_layer: Callable = nn.GELU, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.c_fc = nn.Linear(d_model, mlp_width) self.gelu = act_layer() self.c_proj = nn.Linear(mlp_width, d_model) def forward(self, x): x = self.hook("c_fc.post", ret=self.c_fc(x)) x = self.hook("gelu.post", ret=self.gelu(x)) x = self.hook("c_proj.post", ret=self.c_proj(x)) self.hook.finalize() return x class MultiheadAttention(nn.Module): """ There are variety of ways to look at multihead attention. Because of that I implemented a few so it will be easy to compare. """ def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.in_proj_weight = nn.Parameter(torch.empty((3 * embed_dim, embed_dim))) if bias: self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter("in_proj_bias", None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim))) self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim))) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn def forward_direct(self, x, attn_mask=None): B, N, C = x.shape qkv = self.hook( "in_proj_bias.post", ret=self.hook("in_proj.post", ret=x @ self.in_proj_weight.T) + self.in_proj_bias, ) qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) k = self.hook("k", ret=k) q = self.hook("q", ret=q) v = self.hook("v", ret=v) dk = q.size()[-1] q = q / math.sqrt(dk) q = self.hook("q_norm", ret=q) attn = q @ k.transpose(-2, -1) # [B, H, N, N] attn = self.hook("pre_mask", ret=attn) if attn_mask is not None: attn += attn_mask attn = self.hook("post_mask", ret=attn) attn = attn.softmax(dim=-1) attn = self.hook("post_softmax", ret=attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.hook("attn_v", ret=x) x = self.hook( "out_proj_bias.post", ret=self.hook("out_proj.post", ret=x @ self.out_proj.weight.T) + self.out_proj.bias, ) return x def _split_qkv_weight(self): q_weight, k_weight, v_weight = ( self.in_proj_weight[: self.embed_dim].reshape( self.num_heads, self.head_dim, -1 ), self.in_proj_weight[self.embed_dim : self.embed_dim * 2].reshape( self.num_heads, self.head_dim, -1 ), self.in_proj_weight[self.embed_dim * 2 :].reshape( self.num_heads, self.head_dim, -1 ), ) return q_weight, k_weight, v_weight def _split_qkv_bias(self): q_bias, k_bias, v_bias = ( self.in_proj_bias[: self.embed_dim].reshape( 1, self.num_heads, 1, self.head_dim ), self.in_proj_bias[self.embed_dim : self.embed_dim * 2].reshape( 1, self.num_heads, 1, self.head_dim ), self.in_proj_bias[self.embed_dim * 2 :].reshape( 1, self.num_heads, 1, self.head_dim ), ) return q_bias, k_bias, v_bias def forward_qkv(self, x, attn_mask=None): B, N, C = x.shape q_weight, k_weight, v_weight = ( self.in_proj_weight[: self.embed_dim], self.in_proj_weight[self.embed_dim : self.embed_dim * 2], self.in_proj_weight[self.embed_dim * 2 :], ) q_bias, k_bias, v_bias = ( self.in_proj_bias[: self.embed_dim], self.in_proj_bias[self.embed_dim : self.embed_dim * 2], self.in_proj_bias[self.embed_dim * 2 :], ) q = ( self.hook( "in_q_bias.post", ret=self.hook("in_q.post", ret=x @ q_weight.T) + q_bias, ) .reshape(B, N, self.num_heads, self.head_dim) .permute(0, 2, 1, 3) ) k = ( self.hook( "in_k_bias.post", ret=self.hook("in_k.post", ret=x @ k_weight.T) + k_bias, ) .reshape(B, N, self.num_heads, self.head_dim) .permute(0, 2, 1, 3) ) v = ( self.hook( "in_v_bias.post", ret=self.hook("in_v.post", ret=x @ v_weight.T) + v_bias, ) .reshape(B, N, self.num_heads, self.head_dim) .permute(0, 2, 1, 3) ) dk = q.size()[-1] q = q / math.sqrt(dk) q = self.hook("q_norm", ret=q) attn = q @ k.transpose(-2, -1) attn = self.hook("attention.pre_mask", ret=attn) if attn_mask is not None: attn += attn_mask attn = self.hook("attention.post_mask", ret=attn) attn = attn.softmax(dim=-1) attn = self.hook("attention.post_softmax", ret=attn) # [B, H, N, N] x = torch.einsum("bhnm,bhmc->bhnmc", attn, v) x = self.hook("extended_attn_v", ret=x) x = x.sum(axis=3).transpose(1, 2).reshape(B, N, C) x = self.hook("attn_v", ret=x) x = self.hook( "out.post_bias", ret=self.hook("out.post", ret=x @ self.out_proj.weight.T) + self.out_proj.bias, ) return x def forward_per_head_no_spatial(self, x, attn_mask=None): B, N, C = x.shape q_weight, k_weight, v_weight = self._split_qkv_weight() q_bias, k_bias, v_bias = self._split_qkv_bias() q = self.hook( "in_q_bias.post", ret=self.hook("in_q.post", ret=torch.einsum("bnc,hdc->bhnd", x, q_weight)) + q_bias, ) k = self.hook( "in_k_bias.post", ret=self.hook("in_k.post", ret=torch.einsum("bnc,hdc->bhnd", x, k_weight)) + k_bias, ) v = self.hook( "in_v_bias.post", ret=self.hook("in_v.post", ret=torch.einsum("bnc,hdc->bhnd", x, v_weight)) + v_bias, ) # (B, self.num_heads, N, self.head_dim) dk = q.size()[-1] q = q / math.sqrt(dk) q = self.hook("q_norm", ret=q) attn = q @ k.transpose(-2, -1) attn = self.hook("attention.pre_mask", ret=attn) if attn_mask is not None: attn += attn_mask attn = self.hook("attention.post_mask", ret=attn) attn = attn.softmax(dim=-1) attn = self.hook("attention.post_softmax", ret=attn) # [B, H, N, N] x = torch.einsum( "bhnm,bhmc->bnhc", attn, v ) # We also switch here back from head-first to n-first x = self.hook("attn_v", ret=x) x = self.hook( "out.post", ret=torch.einsum( "bnhc,dhc->bnhd", x, self.out_proj.weight.reshape( self.embed_dim, self.num_heads, self.head_dim ), ), ) x = self.hook("out.post_collapse", ret=x.sum(axis=2)) x = self.hook("out.post_bias", ret=x + self.out_proj.bias) return x def forward_per_head(self, x, attn_mask=None): B, N, C = x.shape q_weight, k_weight, v_weight = self._split_qkv_weight() q_bias, k_bias, v_bias = self._split_qkv_bias() q = self.hook( "in_q_bias.post", ret=self.hook("in_q.post", ret=torch.einsum("bnc,hdc->bhnd", x, q_weight)) + q_bias, ) k = self.hook( "in_k_bias.post", ret=self.hook("in_k.post", ret=torch.einsum("bnc,hdc->bhnd", x, k_weight)) + k_bias, ) v = self.hook( "in_v_bias.post", ret=self.hook("in_v.post", ret=torch.einsum("bnc,hdc->bhnd", x, v_weight)) + v_bias, ) # (B, self.num_heads, N, self.head_dim) dk = q.size()[-1] q = q / math.sqrt(dk) q = self.hook("q_norm", ret=q) attn = q @ k.transpose(-2, -1) attn = self.hook("attention.pre_mask", ret=attn) if attn_mask is not None: attn += attn_mask attn = self.hook("attention.post_mask", ret=attn) attn = attn.softmax(dim=-1) attn = self.hook("attention.post_softmax", ret=attn) # [B, H, N, N] x = torch.einsum( "bhnm,bhmc->bnmhc", attn, v ) # We also switch here back from head-first to n-first x = self.hook("extended_attn_v", ret=x) x = self.hook( "out.post", ret=torch.einsum( "bnmhc,dhc->bnmhd", x, self.out_proj.weight.reshape( self.embed_dim, self.num_heads, self.head_dim ), ), ) x = self.hook("out.post_collapse", ret=x.sum(axis=[2, 3])) x = self.hook("out.post_bias", ret=x + self.out_proj.bias) return x def _get_ov_circuit( self, ): reshaped_o = self.out_proj.weight.reshape( self.embed_dim, self.num_heads, self.head_dim ) _, _, v_weight = self._split_qkv_weight() # num_heads, head_dim, embed_dim _, _, v_bias = self._split_qkv_bias() # 1, num_heads, 1, head_dim ov_circuit = torch.einsum("onh,nhi->oni", reshaped_o, v_weight) ov_bias_circuit = torch.einsum( "onh,bnxh->bnxo", reshaped_o, v_bias ) # [1, num_heads, 1, embed_dim] return ov_circuit, ov_bias_circuit def forward_ov_circuit(self, x, attn_mask=None): B, N, C = x.shape q_weight, k_weight, _ = self._split_qkv_weight() q_bias, k_bias, _ = self._split_qkv_bias() q = self.hook( "in_q_bias.post", ret=self.hook("in_q.post", ret=torch.einsum("bnc,hdc->bhnd", x, q_weight)) + q_bias, ) k = self.hook( "in_k_bias.post", ret=self.hook("in_k.post", ret=torch.einsum("bnc,hdc->bhnd", x, k_weight)) + k_bias, ) ov, ov_bias = self._get_ov_circuit() ov = self.hook("ov", ret=ov) ov_bias = self.hook("ov_bias", ret=ov_bias) v = self.hook( "ov_bias.post", ret=self.hook("ov.post", ret=torch.einsum("bnc,dhc->bhnd", x, ov)) + ov_bias, ) dk = q.size()[-1] q = q / math.sqrt(dk) q = self.hook("q_norm", ret=q) attn = q @ k.transpose(-2, -1) attn = self.hook("attention.pre_mask", ret=attn) if attn_mask is not None: attn += attn_mask attn = self.hook("attention.post_mask", ret=attn) attn = attn.softmax(dim=-1) attn = self.hook("attention.post_softmax", ret=attn) # [B, H, N, N] x = torch.einsum( "bhnm,bhmc->bnmhc", attn, v ) # We also switch here back from head-first to n-first x = self.hook("extended_attn_ov", ret=x) x = self.hook("out.post_collapse", ret=x.sum(axis=[2, 3])) x = self.hook("out.post_bias", ret=x + self.out_proj.bias) return x def forward(self, x, attn_mask=None, method: Text = "ov_circuit"): if method == "direct": x = self.forward_direct(x, attn_mask=attn_mask) elif method == "qkv": x = self.forward_qkv(x, attn_mask=attn_mask) elif method == "head": x = self.forward_per_head(x, attn_mask=attn_mask) elif method == "head_no_spatial": x = self.forward_per_head_no_spatial(x, attn_mask=attn_mask) elif method == "ov_circuit": x = self.forward_ov_circuit(x, attn_mask=attn_mask) else: raise NotImplementedError('Unknown attention method') self.hook.finalize() return x class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.ln_1 = norm_layer(d_model, hook=hook.fork("ln_1")) self.attn = MultiheadAttention(d_model, n_head, hook=hook.fork("attn")) self.ls_1 = ( LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() ) self.ln_2 = norm_layer(d_model, hook=hook.fork("ln_2")) mlp_width = int(d_model * mlp_ratio) self.mlp = MLP(d_model, mlp_width, act_layer=act_layer, hook=hook.fork("mlp")) self.ls_2 = ( LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() ) def attention( self, q_x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, method: Text = "direct", ): attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None return self.attn(q_x, attn_mask=attn_mask, method=method) def forward( self, q_x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, attn_method: Text = "direct", ): q_x = self.hook("pre", ret=q_x) after_ln1 = self.ln_1(q_x) after_attn = self.attention( q_x=after_ln1, attn_mask=attn_mask, method=attn_method ) after_attn = self.hook("after_attn", ret=after_attn) x = q_x + self.ls_1(after_attn) after_ln2 = self.ln_2(x) after_mlp = self.mlp(after_ln2) after_mlp = self.hook("after_mlp", ret=after_mlp) x = x + self.ls_2(after_mlp) x = self.hook("post", ret=x) self.hook.finalize() return x class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, ls_init_value: float = None, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.width = width self.layers = layers self.grad_checkpointing = False self.resblocks = nn.ModuleList( [ ResidualAttentionBlock( width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, hook=hook.fork(f"resblocks.{i}"), ) for i in range(layers) ] ) def get_cast_dtype(self) -> torch.dtype: if hasattr(self.resblocks[0].mlp.c_fc, "int8_original_dtype"): return self.resblocks[0].mlp.c_fc.int8_original_dtype return self.resblocks[0].mlp.c_fc.weight.dtype def forward( self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, attn_method: Text = "direct", ): for r in self.resblocks: if self.grad_checkpointing and not torch.jit.is_scripting(): raise ValueError("grad_checkpointing not implement") # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 x = checkpoint(r, x, None, None, attn_mask) else: x = r(x, attn_mask=attn_mask, attn_method=attn_method) self.hook.finalize() return x class VisionTransformer(nn.Module): output_tokens: torch.jit.Final[bool] def __init__( self, image_size: int, patch_size: int, width: int, layers: int, heads: int, mlp_ratio: float, ls_init_value: float = None, global_average_pool: bool = False, attentional_pool: bool = False, n_queries: int = 256, attn_pooler_heads: int = 8, output_dim: int = 512, patch_dropout: float = 0.0, input_patchnorm: bool = False, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, output_tokens: bool = False, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.output_tokens = output_tokens image_height, image_width = self.image_size = to_2tuple(image_size) patch_height, patch_width = self.patch_size = to_2tuple(patch_size) self.grid_size = (image_height // patch_height, image_width // patch_width) self.output_dim = output_dim # whether to layernorm each patch, as done in dual patchnorm paper - https://arxiv.org/abs/2302.01327v1 self.input_patchnorm = input_patchnorm if input_patchnorm: patch_input_dim = patch_height * patch_width * 3 self.patchnorm_pre_ln = LayerNorm( patch_input_dim, hook=hook.fork("patchnorm_pre_ln") ) self.conv1 = nn.Linear(patch_input_dim, width) else: self.patchnorm_pre_ln = nn.Identity() self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False, ) # class embeddings and positional embeddings scale = width**-0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter( scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width) ) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = ( PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() ) self.ln_pre = norm_layer(width, hook=hook.fork("ln_pre")) self.transformer = Transformer( width, layers, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, hook=hook.fork("transformer"), ) self.global_average_pool = global_average_pool if attentional_pool: self.attn_pool = AttentionalPooler( output_dim, width, n_head=attn_pooler_heads, n_queries=n_queries ) self.ln_post = norm_layer(output_dim, hook=hook.fork("ln_post")) self.proj = nn.Parameter(scale * torch.randn(output_dim, output_dim)) else: self.attn_pool = None self.ln_post = norm_layer(width, hook=hook.fork("ln_post")) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: if self.global_average_pool: return x.mean(dim=1), x else: return x[:, 0], x[:, 1:] def forward(self, x: torch.Tensor, attn_method: Text = "direct"): # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 if self.input_patchnorm: # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') x = x.reshape( x.shape[0], x.shape[1], self.grid_size[0], self.patch_size[0], self.grid_size[1], self.patch_size[1], ) x = x.permute(0, 2, 4, 1, 3, 5) x = x.reshape(x.shape[0], self.grid_size[0] * self.grid_size[1], -1) x = self.hook("patchnorm_pre_ln.post", ret=self.patchnorm_pre_ln(x)) x = self.hook("conv1.post", ret=self.conv1(x)) else: x = self.hook( "conv1.post", ret=self.conv1(x) ) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] # class embeddings and positional embeddings x = torch.cat( [ self.class_embedding.to(x.dtype) + torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device ), x, ], dim=1, ) # shape = [*, grid ** 2 + 1, width] x = self.hook( "positional_embedding.post", ret=x + self.positional_embedding.to(x.dtype) ) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in x = self.hook("patch_dropout.post", ret=self.patch_dropout(x)) x = self.hook("ln_pre_post", ret=self.ln_pre(x)) # x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x, attn_method=attn_method) # x = x.permute(1, 0, 2) # LND -> NLD if self.attn_pool is not None: x = self.hook("attn_pool.post", ret=self.attn_pool(x)) x = self.hook("ln_post_post", ret=self.ln_post(x)) pooled, tokens = self.hook("global_pool.post", ret=self._global_pool(x)) else: pooled, tokens = self.hook("global_pool.post", ret=self._global_pool(x)) pooled = self.hook("ln_post_post", ret=self.ln_post(pooled)) if self.proj is not None: pooled = self.hook( "proj.post", ret=self.hook("proj.pre", ret=pooled) @ self.proj ) self.hook.finalize() if self.output_tokens: return pooled, tokens return pooled class TextTransformer(nn.Module): output_tokens: torch.jit.Final[bool] def __init__( self, context_length: int = 77, vocab_size: int = 49408, width: int = 512, heads: int = 8, layers: int = 12, ls_init_value: float = None, output_dim: int = 512, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm, embed_cls: bool = False, pad_id: int = 0, output_tokens: bool = False, hook: Optional[HookManager] = None, ): super().__init__() self.hook = hook or HookManager() self.output_tokens = output_tokens self.num_pos = self.context_length = context_length self.vocab_size = vocab_size self.width = width self.output_dim = output_dim self.heads = heads self.pad_id = pad_id self.text_projection = nn.Parameter(torch.empty(width, output_dim)) if embed_cls: self.cls_emb = nn.Parameter(torch.empty(width)) self.num_pos += 1 else: self.cls_emb = None self.token_embedding = nn.Embedding(vocab_size, width) self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width)) self.transformer = Transformer( width=width, layers=layers, heads=heads, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, hook=self.hook.fork("transformer"), ) self.ln_final = norm_layer(width) self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) self.init_parameters() def init_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if self.cls_emb is not None: nn.init.normal_(self.cls_emb, std=0.01) proj_std = (self.transformer.width**-0.5) * ( (2 * self.transformer.layers) ** -0.5 ) attn_std = self.transformer.width**-0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable def build_attention_mask(self): # lazily create causal attention mask, with full attention between the tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.num_pos, self.num_pos) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def build_cls_mask(self, text, cast_dtype: torch.dtype): cls_mask = (text != self.pad_id).unsqueeze(1) cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=1.0) additive_mask = torch.empty( cls_mask.shape, dtype=cast_dtype, device=cls_mask.device ) additive_mask.fill_(0) additive_mask.masked_fill_(~cls_mask, float("-inf")) additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0) return additive_mask def _repeat(self, t, N: int): return t.reshape(1, 1, -1).repeat(N, 1, 1) def forward(self, text, attn_method: Text = "direct"): cast_dtype = self.transformer.get_cast_dtype() seq_len = text.shape[1] x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] attn_mask = self.attn_mask if self.cls_emb is not None: seq_len += 1 x = torch.cat([x, self._repeat(self.cls_emb, x.shape[0])], dim=1) cls_mask = self.build_cls_mask(text, cast_dtype) attn_mask = ( attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len] ) x = x + self.positional_embedding[:seq_len].to(cast_dtype) # x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x, attn_mask=attn_mask, attn_method=attn_method) # x = x.permute(1, 0, 2) # LND -> NLD # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) if self.cls_emb is not None: pooled, tokens = x[:, -1], x[:, :-1] pooled = self.ln_final(pooled) else: x = self.ln_final(x) pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x if self.text_projection is not None: pooled = pooled @ self.text_projection self.hook.finalize() if self.output_tokens: return pooled, tokens return pooled