alignedthreeattn / alignedthreeattn_model.py
huzey's picture
upload
3b4de15
raw
history blame
2.52 kB
# %%
import os
import torch
from PIL import Image
from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn.functional as F
# align_weights = torch.load("align_weights.pth")
from torch import nn
from alignedthreeattn_backbone import CLIPAttnNode, DiNOv2AttnNode, MAEAttnNode
class ThreeAttnNodes(nn.Module):
def __init__(self, align_weights):
super().__init__()
self.backbone1 = CLIPAttnNode()
self.backbone2 = DiNOv2AttnNode()
self.backbone3 = MAEAttnNode()
for backbone in [self.backbone1, self.backbone2, self.backbone3]:
backbone.requires_grad_(False)
backbone.eval()
def resample_position_embeddings(embeddings, h, w):
cls_embeddings = embeddings[0]
patch_embeddings = embeddings[1:] # [14*14, 768]
hw = np.sqrt(patch_embeddings.shape[0]).astype(int)
patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw)
patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0)
patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c")
embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
return embeddings
pos_embd = self.backbone1.model.visual.positional_embedding
pos_embd = resample_position_embeddings(pos_embd, 42, 42)
self.backbone1.model.visual.positional_embedding = nn.Parameter(pos_embd)
pos_embed = self.backbone3.model.pos_embed[0]
pos_embed = resample_position_embeddings(pos_embed, 42, 42)
self.backbone3.model.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
self.backbone3.model.img_size = (672, 672)
self.backbone3.model.patch_embed.img_size = (672, 672)
self.align_weights = nn.Parameter(align_weights)
@torch.no_grad()
def forward(self, x):
# resize x to 672x672
x = F.interpolate(x, size=(672, 672), mode="bilinear")
feat1 = self.backbone1(x)
feat3 = self.backbone3(x)
# resize x to 588x588
x = F.interpolate(x, size=(588, 588), mode="bilinear")
feat2 = self.backbone2(x)
feats = torch.cat([feat1, feat2, feat3], dim=1)
out = torch.einsum("b l p i, l o i -> b l p o", feats, self.align_weights)
out = rearrange(out[:, :, 1:], "b l (h w) o -> b l h w o", h=42, w=42)
return out