File size: 8,322 Bytes
7acde1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import time
import numpy as np
import torch
from PIL import Image
import glob
import sys
import argparse
import datetime
import json
from pathlib import Path


class PRSLogger(object):
    def __init__(self, model, device, spatial: bool = True):
        self.current_layer = 0
        self.device = device
        self.attentions = []
        self.mlps = []
        self.ks = []
        self.qs = []
        self.vs = []
        self.attn_mats = []
        self.spatial = spatial
        self.post_ln_std = None
        self.post_ln_mean = None
        self.model = model

    @torch.no_grad()
    def compute_attentions_spatial(self, ret):
        assert (
            len(ret.shape) == 5
        ), "Verify that you use method=`head` and not method=`head_no_spatial`"  # [b, n, m, h, d]
        assert (
            self.spatial
        ), "Verify that you use method=`head` and not method=`head_no_spatial`"
        bias_term = self.model.visual.transformer.resblocks[
            self.current_layer
        ].attn.out_proj.bias
        self.current_layer += 1
        return_value = ret[:, 0]  # This is only for the cls token
        self.attentions.append(
            return_value
            + bias_term[np.newaxis, np.newaxis, np.newaxis]
            / (return_value.shape[1] * return_value.shape[2])
        )  # [b, n, h, d]
        return ret

    @torch.no_grad()
    def compute_attentions_non_spatial(self, ret):
        assert (
            len(ret.shape) == 4
        ), "Verify that you use method=`head_no_spatial` and not method=`head`"  # [b, n, h, d]
        assert (
            not self.spatial
        ), "Verify that you use method=`head_no_spatial` and not method=`head`"
        bias_term = self.model.visual.transformer.resblocks[
            self.current_layer
        ].attn.out_proj.bias
        self.current_layer += 1
        # return_value = ret[:, 0]  # This is only for the cls token
        return_value = ret
        self.attentions.append(
            return_value + bias_term / (return_value.shape[-2])
        )  # [b, h, d]
        return ret

    @torch.no_grad()
    def compute_k(self, ret):
        self.ks.append(ret)  # [b, n, h, d]
        return ret

    @torch.no_grad()
    def compute_q(self, ret):
        self.qs.append(ret)
        return ret

    @torch.no_grad()
    def compute_v(self, ret):
        self.vs.append(ret)
        return ret

    @torch.no_grad()
    def compute_attn_mat(self, ret):
        self.attn_mats.append(ret)
        return ret

    @torch.no_grad()
    def compute_mlps(self, ret):
        # self.mlps.append(ret[:, 0])  # [b, d]
        self.mlps.append(ret)  # [b, d]
        return ret

    @torch.no_grad()
    def log_post_ln_mean(self, ret):
        self.post_ln_mean = ret  # [b, 1]
        return ret

    @torch.no_grad()
    def log_post_ln_std(self, ret):
        self.post_ln_std = ret  # [b, 1]
        return ret

    def _normalize_mlps(self):
        len_intermediates = self.attentions.shape[1] + self.mlps.shape[1]
        # This is just the normalization layer:
        mean_centered = (
            self.mlps
            - self.post_ln_mean[:, :, np.newaxis].to(self.device) / len_intermediates
        )
        weighted_mean_centered = (
            self.model.visual.ln_post.weight.detach().to(self.device) * mean_centered
        )
        weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[
            :, :, np.newaxis
        ].to(self.device)
        bias_term = (
            self.model.visual.ln_post.bias.detach().to(self.device) / len_intermediates
        )
        post_ln = weighted_mean_by_std + bias_term
        return post_ln @ self.model.visual.proj.detach().to(self.device)

    def _normalize_attentions_spatial(self):
        len_intermediates = self.attentions.shape[1] + self.mlps.shape[1]  # 2*l + 1
        normalization_term = (
            self.attentions.shape[2] * self.attentions.shape[3]
        )  # n * h
        # This is just the normalization layer:
        mean_centered = self.attentions - self.post_ln_mean[
            :, :, np.newaxis, np.newaxis, np.newaxis
        ].to(self.device) / (len_intermediates * normalization_term)
        weighted_mean_centered = (
            self.model.visual.ln_post.weight.detach().to(self.device) * mean_centered
        )
        weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[
            :, :, np.newaxis, np.newaxis, np.newaxis
        ].to(self.device)
        bias_term = self.model.visual.ln_post.bias.detach().to(self.device) / (
            len_intermediates * normalization_term
        )
        post_ln = weighted_mean_by_std + bias_term
        return post_ln @ self.model.visual.proj.detach().to(self.device)

    def _normalize_attentions_non_spatial(self):
        len_intermediates = self.attentions.shape[1] + self.mlps.shape[1]  # 2*l + 1
        normalization_term = self.attentions.shape[2]  # h
        # This is just the normalization layer:
        mean_centered = self.attentions - self.post_ln_mean[
            :, :, np.newaxis, np.newaxis
        ].to(self.device) / (len_intermediates * normalization_term)
        weighted_mean_centered = (
            self.model.visual.ln_post.weight.detach().to(self.device) * mean_centered
        )
        weighted_mean_by_std = weighted_mean_centered / self.post_ln_std[
            :, :, np.newaxis, np.newaxis
        ].to(self.device)
        bias_term = self.model.visual.ln_post.bias.detach().to(self.device) / (
            len_intermediates * normalization_term
        )
        post_ln = weighted_mean_by_std + bias_term
        return post_ln @ self.model.visual.proj.detach().to(self.device)

    @torch.no_grad()
    def finalize(self, representation):
        """We calculate the post-ln scaling, project it and normalize by the last norm."""
        self.attentions = torch.stack(self.attentions, axis=1).to(
            self.device
        )  # [b, l, n, h, d]
        self.mlps = torch.stack(self.mlps, axis=1).to(self.device)  # [b, l + 1, d]
        if self.spatial:
            projected_attentions = self._normalize_attentions_spatial()
        else:
            projected_attentions = self._normalize_attentions_non_spatial()
        projected_mlps = self._normalize_mlps()
        norm = representation.norm(dim=-1).detach()
        if self.spatial:
            return (
                projected_attentions
                / norm[:, np.newaxis, np.newaxis, np.newaxis, np.newaxis],
                projected_mlps / norm[:, np.newaxis, np.newaxis],
            )
        return (
            projected_attentions / norm[:, np.newaxis, np.newaxis, np.newaxis],
            projected_mlps / norm[:, np.newaxis, np.newaxis],
        )

    def reinit(self):
        self.current_layer = 0
        self.attentions = []
        self.mlps = []
        self.ks = []
        self.qs = []
        self.vs = []
        self.attn_mats = []
        self.post_ln_mean = None
        self.post_ln_std = None
        torch.cuda.empty_cache()


def hook_prs_logger(model, device, spatial: bool = True):
    """Hooks a projected residual stream logger to the model."""
    prs = PRSLogger(model, device, spatial=spatial)
    if spatial:
        model.hook_manager.register(
            "visual.transformer.resblocks.*.attn.out.post",
            prs.compute_attentions_spatial,
        )
    else:
        model.hook_manager.register(
            "visual.transformer.resblocks.*.attn.out.post",
            prs.compute_attentions_non_spatial,
        )
    model.hook_manager.register(
        "visual.transformer.resblocks.*.mlp.c_proj.post", prs.compute_mlps
    )
    # model.hook_manager.register("visual.transformer.resblocks.*.attn.in_k.post", prs.compute_k)
    # model.hook_manager.register("visual.transformer.resblocks.*.attn.in_q.post", prs.compute_q)
    # model.hook_manager.register("visual.transformer.resblocks.*.attn.in_v.post", prs.compute_v)
    model.hook_manager.register(
        "visual.transformer.resblocks.*.attn.attention.pre_mask", prs.compute_attn_mat
    )
    model.hook_manager.register("visual.ln_pre_post", prs.compute_mlps)
    model.hook_manager.register("visual.ln_post.mean", prs.log_post_ln_mean)
    model.hook_manager.register("visual.ln_post.sqrt_var", prs.log_post_ln_std)
    return prs