Testing
Browse files- handler.py +52 -5
handler.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
from typing import Any, Dict, List
|
| 2 |
-
from transformers import Idefics2Processor,
|
| 3 |
import torch
|
| 4 |
import logging
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class EndpointHandler:
|
|
@@ -11,7 +13,7 @@ class EndpointHandler:
|
|
| 11 |
self.logger.addHandler(logging.StreamHandler())
|
| 12 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
self.processor = Idefics2Processor.from_pretrained(path)
|
| 14 |
-
self.model =
|
| 15 |
self.model.to(self.device)
|
| 16 |
self.logger.info("Initialisation finished!")
|
| 17 |
|
|
@@ -23,20 +25,65 @@ class EndpointHandler:
|
|
| 23 |
Return:
|
| 24 |
A :obj:`list` | `dict`: will be serialized and returned
|
| 25 |
"""
|
| 26 |
-
image = data.pop("inputs", data)
|
| 27 |
self.logger.info("image")
|
| 28 |
|
| 29 |
# process image
|
| 30 |
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
| 31 |
self.logger.info("inputs")
|
| 32 |
-
|
|
|
|
| 33 |
self.logger.info("generated")
|
| 34 |
|
| 35 |
# run prediction
|
| 36 |
generated_text = self.processor.batch_decode(
|
| 37 |
generated_ids, skip_special_tokens=True
|
| 38 |
)
|
| 39 |
-
self.logger.info("decoded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# decode output
|
| 42 |
return generated_text
|
|
|
|
| 1 |
from typing import Any, Dict, List
|
| 2 |
+
from transformers import Idefics2Processor, Idefics2ForConditionalGeneration
|
| 3 |
import torch
|
| 4 |
import logging
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import requests
|
| 7 |
|
| 8 |
|
| 9 |
class EndpointHandler:
|
|
|
|
| 13 |
self.logger.addHandler(logging.StreamHandler())
|
| 14 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
self.processor = Idefics2Processor.from_pretrained(path)
|
| 16 |
+
self.model = Idefics2ForConditionalGeneration.from_pretrained(path)
|
| 17 |
self.model.to(self.device)
|
| 18 |
self.logger.info("Initialisation finished!")
|
| 19 |
|
|
|
|
| 25 |
Return:
|
| 26 |
A :obj:`list` | `dict`: will be serialized and returned
|
| 27 |
"""
|
| 28 |
+
"""image = data.pop("inputs", data)
|
| 29 |
self.logger.info("image")
|
| 30 |
|
| 31 |
# process image
|
| 32 |
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
| 33 |
self.logger.info("inputs")
|
| 34 |
+
self.logger.info(f"{inputs.input_ids}")
|
| 35 |
+
generated_ids = self.model.generate(**inputs)
|
| 36 |
self.logger.info("generated")
|
| 37 |
|
| 38 |
# run prediction
|
| 39 |
generated_text = self.processor.batch_decode(
|
| 40 |
generated_ids, skip_special_tokens=True
|
| 41 |
)
|
| 42 |
+
self.logger.info("decoded")"""
|
| 43 |
+
|
| 44 |
+
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 45 |
+
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
| 46 |
+
|
| 47 |
+
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
| 48 |
+
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
| 49 |
+
images = [image_1, image_2]
|
| 50 |
+
|
| 51 |
+
messages = [
|
| 52 |
+
{
|
| 53 |
+
"role": "user",
|
| 54 |
+
"content": [
|
| 55 |
+
{
|
| 56 |
+
"type": "text",
|
| 57 |
+
"text": "What’s the difference between these two images?",
|
| 58 |
+
},
|
| 59 |
+
{"type": "image"},
|
| 60 |
+
{"type": "image"},
|
| 61 |
+
],
|
| 62 |
+
}
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b")
|
| 66 |
+
model = Idefics2ForConditionalGeneration.from_pretrained(
|
| 67 |
+
"HuggingFaceM4/idefics2-8b"
|
| 68 |
+
)
|
| 69 |
+
model.to(self.device)
|
| 70 |
+
|
| 71 |
+
# at inference time, one needs to pass `add_generation_prompt=True` in order to make sure the model completes the prompt
|
| 72 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 73 |
+
self.logger.info(text)
|
| 74 |
+
# 'User: What’s the difference between these two images?<image><image><end_of_utterance>\nAssistant:'
|
| 75 |
+
|
| 76 |
+
inputs = processor(images=images, text=text, return_tensors="pt").to(
|
| 77 |
+
self.device
|
| 78 |
+
)
|
| 79 |
+
self.logger.info("inputs")
|
| 80 |
+
|
| 81 |
+
generated_text = model.generate(**inputs, max_new_tokens=500)
|
| 82 |
+
self.logger.info("generated")
|
| 83 |
+
generated_text = processor.batch_decode(
|
| 84 |
+
generated_text, skip_special_tokens=True
|
| 85 |
+
)[0]
|
| 86 |
+
self.logger.info(f"Generated text: {generated_text}")
|
| 87 |
|
| 88 |
# decode output
|
| 89 |
return generated_text
|