idefics2-8b-ocr / handler.py
huz-relay's picture
Add logging
29bd164
raw
history blame
1.71 kB
from typing import Any, Dict, List
from transformers import Idefics2Processor, Idefics2ForConditionalGeneration
import torch
import logging
class EndpointHandler:
def __init__(self, path=""):
# Preload all the elements you are going to need at inference.
self.logger = logging.getLogger()
self.logger.addHandler(logging.StreamHandler())
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.processor = Idefics2Processor.from_pretrained(path)
self.model = Idefics2ForConditionalGeneration.from_pretrained(path)
self.model.to(self.device)
self.logger.info("Initialisation finished!")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
checkpoints = ""
try:
image = data.pop("inputs", data)
checkpoints += "image reached\n"
# process image
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
checkpoints += "inputs reached\n"
generated_ids = self.model.generate(**inputs, max_new_tokens=20)
checkpoints += "generated\n"
# run prediction
generated_text: List[str] = self.processor.batch_decode(
generated_ids, skip_special_tokens=True
)
checkpoints += "decoded\n"
except Exception as e:
checkpoints += f"{e}\n"
# decode output
return generated_text.append(checkpoints)