hung200504 commited on
Commit
9b43446
1 Parent(s): e2024da

bert-cased

Browse files
README.md ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ base_model: deepset/bert-base-cased-squad2
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: bert-29
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bert-29
15
+
16
+ This model is a fine-tuned version of [deepset/bert-base-cased-squad2](https://huggingface.co/deepset/bert-base-cased-squad2) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 6.1544
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 4
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 10
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:----:|:---------------:|
49
+ | 10.3108 | 0.02 | 5 | 12.3308 |
50
+ | 11.3676 | 0.05 | 10 | 12.2829 |
51
+ | 12.0965 | 0.07 | 15 | 12.2339 |
52
+ | 10.877 | 0.09 | 20 | 12.1855 |
53
+ | 11.5463 | 0.11 | 25 | 12.1375 |
54
+ | 10.4439 | 0.14 | 30 | 12.0898 |
55
+ | 11.3519 | 0.16 | 35 | 12.0421 |
56
+ | 11.2558 | 0.18 | 40 | 11.9943 |
57
+ | 11.0568 | 0.21 | 45 | 11.9462 |
58
+ | 11.3265 | 0.23 | 50 | 11.8980 |
59
+ | 9.511 | 0.25 | 55 | 11.8505 |
60
+ | 10.6662 | 0.28 | 60 | 11.8043 |
61
+ | 10.2726 | 0.3 | 65 | 11.7576 |
62
+ | 11.1502 | 0.32 | 70 | 11.7108 |
63
+ | 11.2245 | 0.34 | 75 | 11.6640 |
64
+ | 10.3183 | 0.37 | 80 | 11.6173 |
65
+ | 11.3083 | 0.39 | 85 | 11.5707 |
66
+ | 10.0481 | 0.41 | 90 | 11.5243 |
67
+ | 10.6689 | 0.44 | 95 | 11.4780 |
68
+ | 10.299 | 0.46 | 100 | 11.4322 |
69
+ | 10.9093 | 0.48 | 105 | 11.3863 |
70
+ | 10.0403 | 0.5 | 110 | 11.3403 |
71
+ | 10.3065 | 0.53 | 115 | 11.2948 |
72
+ | 10.4771 | 0.55 | 120 | 11.2493 |
73
+ | 9.685 | 0.57 | 125 | 11.2040 |
74
+ | 9.6081 | 0.6 | 130 | 11.1592 |
75
+ | 9.9776 | 0.62 | 135 | 11.1145 |
76
+ | 9.8161 | 0.64 | 140 | 11.0705 |
77
+ | 10.078 | 0.67 | 145 | 11.0263 |
78
+ | 10.5549 | 0.69 | 150 | 10.9828 |
79
+ | 9.9488 | 0.71 | 155 | 10.9384 |
80
+ | 10.1075 | 0.73 | 160 | 10.8946 |
81
+ | 9.4674 | 0.76 | 165 | 10.8509 |
82
+ | 10.077 | 0.78 | 170 | 10.8070 |
83
+ | 9.5688 | 0.8 | 175 | 10.7636 |
84
+ | 8.9946 | 0.83 | 180 | 10.7205 |
85
+ | 10.4224 | 0.85 | 185 | 10.6776 |
86
+ | 8.6883 | 0.87 | 190 | 10.6344 |
87
+ | 9.5508 | 0.89 | 195 | 10.5919 |
88
+ | 9.3088 | 0.92 | 200 | 10.5493 |
89
+ | 9.3799 | 0.94 | 205 | 10.5072 |
90
+ | 8.8564 | 0.96 | 210 | 10.4656 |
91
+ | 8.7775 | 0.99 | 215 | 10.4237 |
92
+ | 9.4815 | 1.01 | 220 | 10.3824 |
93
+ | 9.2469 | 1.03 | 225 | 10.3411 |
94
+ | 8.5056 | 1.06 | 230 | 10.3003 |
95
+ | 9.8006 | 1.08 | 235 | 10.2595 |
96
+ | 9.185 | 1.1 | 240 | 10.2181 |
97
+ | 9.3379 | 1.12 | 245 | 10.1769 |
98
+ | 8.5696 | 1.15 | 250 | 10.1359 |
99
+ | 8.4981 | 1.17 | 255 | 10.0960 |
100
+ | 8.9066 | 1.19 | 260 | 10.0554 |
101
+ | 9.043 | 1.22 | 265 | 10.0155 |
102
+ | 7.9105 | 1.24 | 270 | 9.9762 |
103
+ | 8.8268 | 1.26 | 275 | 9.9372 |
104
+ | 8.5896 | 1.28 | 280 | 9.8979 |
105
+ | 8.9422 | 1.31 | 285 | 9.8578 |
106
+ | 8.2276 | 1.33 | 290 | 9.8188 |
107
+ | 9.1443 | 1.35 | 295 | 9.7795 |
108
+ | 8.7467 | 1.38 | 300 | 9.7404 |
109
+ | 9.1588 | 1.4 | 305 | 9.7015 |
110
+ | 8.9789 | 1.42 | 310 | 9.6630 |
111
+ | 7.9135 | 1.44 | 315 | 9.6252 |
112
+ | 8.9771 | 1.47 | 320 | 9.5876 |
113
+ | 8.7356 | 1.49 | 325 | 9.5499 |
114
+ | 8.1398 | 1.51 | 330 | 9.5128 |
115
+ | 8.4803 | 1.54 | 335 | 9.4754 |
116
+ | 8.5553 | 1.56 | 340 | 9.4385 |
117
+ | 8.6194 | 1.58 | 345 | 9.4006 |
118
+ | 8.1879 | 1.61 | 350 | 9.3633 |
119
+ | 8.1535 | 1.63 | 355 | 9.3269 |
120
+ | 8.8795 | 1.65 | 360 | 9.2899 |
121
+ | 8.4935 | 1.67 | 365 | 9.2536 |
122
+ | 8.5901 | 1.7 | 370 | 9.2170 |
123
+ | 8.3013 | 1.72 | 375 | 9.1808 |
124
+ | 8.1959 | 1.74 | 380 | 9.1448 |
125
+ | 8.1158 | 1.77 | 385 | 9.1093 |
126
+ | 7.6286 | 1.79 | 390 | 9.0741 |
127
+ | 8.2353 | 1.81 | 395 | 9.0397 |
128
+ | 7.822 | 1.83 | 400 | 9.0050 |
129
+ | 8.0979 | 1.86 | 405 | 8.9706 |
130
+ | 8.7221 | 1.88 | 410 | 8.9365 |
131
+ | 7.8976 | 1.9 | 415 | 8.9018 |
132
+ | 8.1378 | 1.93 | 420 | 8.8677 |
133
+ | 7.8131 | 1.95 | 425 | 8.8335 |
134
+ | 8.2754 | 1.97 | 430 | 8.7997 |
135
+ | 7.6972 | 2.0 | 435 | 8.7658 |
136
+ | 7.99 | 2.02 | 440 | 8.7324 |
137
+ | 7.7428 | 2.04 | 445 | 8.6995 |
138
+ | 8.0031 | 2.06 | 450 | 8.6671 |
139
+ | 7.9012 | 2.09 | 455 | 8.6346 |
140
+ | 7.1693 | 2.11 | 460 | 8.6023 |
141
+ | 7.8746 | 2.13 | 465 | 8.5700 |
142
+ | 7.3467 | 2.16 | 470 | 8.5386 |
143
+ | 7.863 | 2.18 | 475 | 8.5073 |
144
+ | 7.5655 | 2.2 | 480 | 8.4759 |
145
+ | 7.8374 | 2.22 | 485 | 8.4446 |
146
+ | 7.731 | 2.25 | 490 | 8.4132 |
147
+ | 7.6392 | 2.27 | 495 | 8.3820 |
148
+ | 7.4547 | 2.29 | 500 | 8.3509 |
149
+ | 7.4642 | 2.32 | 505 | 8.3204 |
150
+ | 7.9489 | 2.34 | 510 | 8.2902 |
151
+ | 7.046 | 2.36 | 515 | 8.2605 |
152
+ | 7.2211 | 2.39 | 520 | 8.2313 |
153
+ | 7.2287 | 2.41 | 525 | 8.2026 |
154
+ | 7.0018 | 2.43 | 530 | 8.1745 |
155
+ | 7.4544 | 2.45 | 535 | 8.1465 |
156
+ | 7.8701 | 2.48 | 540 | 8.1183 |
157
+ | 7.2614 | 2.5 | 545 | 8.0897 |
158
+ | 6.9922 | 2.52 | 550 | 8.0616 |
159
+ | 7.1671 | 2.55 | 555 | 8.0342 |
160
+ | 7.7866 | 2.57 | 560 | 8.0062 |
161
+ | 6.9815 | 2.59 | 565 | 7.9786 |
162
+ | 6.9534 | 2.61 | 570 | 7.9514 |
163
+ | 7.2225 | 2.64 | 575 | 7.9251 |
164
+ | 7.1113 | 2.66 | 580 | 7.8986 |
165
+ | 6.7271 | 2.68 | 585 | 7.8728 |
166
+ | 7.132 | 2.71 | 590 | 7.8475 |
167
+ | 6.8046 | 2.73 | 595 | 7.8227 |
168
+ | 7.3063 | 2.75 | 600 | 7.7977 |
169
+ | 6.8367 | 2.78 | 605 | 7.7724 |
170
+ | 7.161 | 2.8 | 610 | 7.7475 |
171
+ | 6.6636 | 2.82 | 615 | 7.7231 |
172
+ | 7.3229 | 2.84 | 620 | 7.6984 |
173
+ | 6.6655 | 2.87 | 625 | 7.6743 |
174
+ | 6.8593 | 2.89 | 630 | 7.6502 |
175
+ | 6.8838 | 2.91 | 635 | 7.6263 |
176
+ | 7.0462 | 2.94 | 640 | 7.6031 |
177
+ | 6.7336 | 2.96 | 645 | 7.5800 |
178
+ | 6.5167 | 2.98 | 650 | 7.5580 |
179
+ | 6.6102 | 3.0 | 655 | 7.5359 |
180
+ | 6.8039 | 3.03 | 660 | 7.5140 |
181
+ | 7.1668 | 3.05 | 665 | 7.4918 |
182
+ | 6.6394 | 3.07 | 670 | 7.4694 |
183
+ | 6.8593 | 3.1 | 675 | 7.4473 |
184
+ | 6.4022 | 3.12 | 680 | 7.4258 |
185
+ | 6.9173 | 3.14 | 685 | 7.4050 |
186
+ | 6.2071 | 3.17 | 690 | 7.3850 |
187
+ | 6.512 | 3.19 | 695 | 7.3654 |
188
+ | 6.6548 | 3.21 | 700 | 7.3459 |
189
+ | 6.7666 | 3.23 | 705 | 7.3263 |
190
+ | 6.3916 | 3.26 | 710 | 7.3066 |
191
+ | 6.7645 | 3.28 | 715 | 7.2874 |
192
+ | 6.5965 | 3.3 | 720 | 7.2679 |
193
+ | 6.5361 | 3.33 | 725 | 7.2490 |
194
+ | 6.8693 | 3.35 | 730 | 7.2295 |
195
+ | 6.3229 | 3.37 | 735 | 7.2106 |
196
+ | 6.7505 | 3.39 | 740 | 7.1919 |
197
+ | 6.4917 | 3.42 | 745 | 7.1739 |
198
+ | 6.5649 | 3.44 | 750 | 7.1566 |
199
+ | 6.5177 | 3.46 | 755 | 7.1392 |
200
+ | 6.6282 | 3.49 | 760 | 7.1219 |
201
+ | 6.5035 | 3.51 | 765 | 7.1051 |
202
+ | 6.5631 | 3.53 | 770 | 7.0880 |
203
+ | 6.4593 | 3.56 | 775 | 7.0715 |
204
+ | 6.5314 | 3.58 | 780 | 7.0554 |
205
+ | 6.2695 | 3.6 | 785 | 7.0400 |
206
+ | 6.4792 | 3.62 | 790 | 7.0249 |
207
+ | 6.7222 | 3.65 | 795 | 7.0091 |
208
+ | 6.4972 | 3.67 | 800 | 6.9931 |
209
+ | 6.3063 | 3.69 | 805 | 6.9776 |
210
+ | 6.1834 | 3.72 | 810 | 6.9630 |
211
+ | 6.3814 | 3.74 | 815 | 6.9485 |
212
+ | 6.3444 | 3.76 | 820 | 6.9339 |
213
+ | 6.3784 | 3.78 | 825 | 6.9195 |
214
+ | 6.4047 | 3.81 | 830 | 6.9052 |
215
+ | 6.2368 | 3.83 | 835 | 6.8916 |
216
+ | 6.1245 | 3.85 | 840 | 6.8784 |
217
+ | 6.3089 | 3.88 | 845 | 6.8657 |
218
+ | 6.3674 | 3.9 | 850 | 6.8526 |
219
+ | 6.4337 | 3.92 | 855 | 6.8393 |
220
+ | 6.2115 | 3.94 | 860 | 6.8270 |
221
+ | 6.2734 | 3.97 | 865 | 6.8145 |
222
+ | 6.2301 | 3.99 | 870 | 6.8023 |
223
+ | 6.0973 | 4.01 | 875 | 6.7905 |
224
+ | 6.2143 | 4.04 | 880 | 6.7785 |
225
+ | 6.4512 | 4.06 | 885 | 6.7665 |
226
+ | 6.1737 | 4.08 | 890 | 6.7545 |
227
+ | 6.3221 | 4.11 | 895 | 6.7427 |
228
+ | 6.2879 | 4.13 | 900 | 6.7313 |
229
+ | 5.9436 | 4.15 | 905 | 6.7214 |
230
+ | 6.1258 | 4.17 | 910 | 6.7126 |
231
+ | 6.2819 | 4.2 | 915 | 6.7031 |
232
+ | 6.1344 | 4.22 | 920 | 6.6934 |
233
+ | 6.3769 | 4.24 | 925 | 6.6833 |
234
+ | 6.3609 | 4.27 | 930 | 6.6731 |
235
+ | 5.9827 | 4.29 | 935 | 6.6632 |
236
+ | 6.039 | 4.31 | 940 | 6.6541 |
237
+ | 6.0012 | 4.33 | 945 | 6.6451 |
238
+ | 6.0147 | 4.36 | 950 | 6.6362 |
239
+ | 5.8187 | 4.38 | 955 | 6.6275 |
240
+ | 5.9193 | 4.4 | 960 | 6.6191 |
241
+ | 6.28 | 4.43 | 965 | 6.6115 |
242
+ | 6.2678 | 4.45 | 970 | 6.6027 |
243
+ | 6.0973 | 4.47 | 975 | 6.5940 |
244
+ | 6.0822 | 4.5 | 980 | 6.5855 |
245
+ | 6.1009 | 4.52 | 985 | 6.5775 |
246
+ | 6.1271 | 4.54 | 990 | 6.5701 |
247
+ | 6.1592 | 4.56 | 995 | 6.5623 |
248
+ | 6.1096 | 4.59 | 1000 | 6.5551 |
249
+ | 5.9785 | 4.61 | 1005 | 6.5481 |
250
+ | 6.3988 | 4.63 | 1010 | 6.5409 |
251
+ | 6.0417 | 4.66 | 1015 | 6.5335 |
252
+ | 6.1195 | 4.68 | 1020 | 6.5261 |
253
+ | 6.0588 | 4.7 | 1025 | 6.5189 |
254
+ | 6.1183 | 4.72 | 1030 | 6.5121 |
255
+ | 5.9251 | 4.75 | 1035 | 6.5057 |
256
+ | 5.9547 | 4.77 | 1040 | 6.5001 |
257
+ | 6.0658 | 4.79 | 1045 | 6.4946 |
258
+ | 6.1259 | 4.82 | 1050 | 6.4889 |
259
+ | 6.0679 | 4.84 | 1055 | 6.4828 |
260
+ | 6.0607 | 4.86 | 1060 | 6.4769 |
261
+ | 5.9526 | 4.89 | 1065 | 6.4715 |
262
+ | 6.0828 | 4.91 | 1070 | 6.4658 |
263
+ | 5.9547 | 4.93 | 1075 | 6.4605 |
264
+ | 6.1024 | 4.95 | 1080 | 6.4551 |
265
+ | 5.9813 | 4.98 | 1085 | 6.4495 |
266
+ | 5.8972 | 5.0 | 1090 | 6.4440 |
267
+ | 5.7935 | 5.02 | 1095 | 6.4390 |
268
+ | 5.9187 | 5.05 | 1100 | 6.4349 |
269
+ | 5.9726 | 5.07 | 1105 | 6.4305 |
270
+ | 6.1756 | 5.09 | 1110 | 6.4254 |
271
+ | 5.8363 | 5.11 | 1115 | 6.4208 |
272
+ | 5.9026 | 5.14 | 1120 | 6.4165 |
273
+ | 6.07 | 5.16 | 1125 | 6.4123 |
274
+ | 5.963 | 5.18 | 1130 | 6.4077 |
275
+ | 5.8744 | 5.21 | 1135 | 6.4032 |
276
+ | 5.7556 | 5.23 | 1140 | 6.3994 |
277
+ | 5.9779 | 5.25 | 1145 | 6.3952 |
278
+ | 5.972 | 5.28 | 1150 | 6.3913 |
279
+ | 5.9615 | 5.3 | 1155 | 6.3873 |
280
+ | 5.996 | 5.32 | 1160 | 6.3834 |
281
+ | 5.8424 | 5.34 | 1165 | 6.3795 |
282
+ | 5.7417 | 5.37 | 1170 | 6.3762 |
283
+ | 5.9022 | 5.39 | 1175 | 6.3727 |
284
+ | 6.0184 | 5.41 | 1180 | 6.3693 |
285
+ | 5.749 | 5.44 | 1185 | 6.3659 |
286
+ | 5.773 | 5.46 | 1190 | 6.3631 |
287
+ | 6.0517 | 5.48 | 1195 | 6.3601 |
288
+ | 5.7407 | 5.5 | 1200 | 6.3573 |
289
+ | 5.9687 | 5.53 | 1205 | 6.3549 |
290
+ | 5.9979 | 5.55 | 1210 | 6.3518 |
291
+ | 6.1084 | 5.57 | 1215 | 6.3482 |
292
+ | 5.8697 | 5.6 | 1220 | 6.3447 |
293
+ | 6.0638 | 5.62 | 1225 | 6.3409 |
294
+ | 6.118 | 5.64 | 1230 | 6.3371 |
295
+ | 5.7951 | 5.67 | 1235 | 6.3334 |
296
+ | 5.7953 | 5.69 | 1240 | 6.3302 |
297
+ | 5.9258 | 5.71 | 1245 | 6.3272 |
298
+ | 6.0077 | 5.73 | 1250 | 6.3240 |
299
+ | 5.7704 | 5.76 | 1255 | 6.3209 |
300
+ | 5.8541 | 5.78 | 1260 | 6.3181 |
301
+ | 5.9699 | 5.8 | 1265 | 6.3153 |
302
+ | 5.8741 | 5.83 | 1270 | 6.3126 |
303
+ | 5.917 | 5.85 | 1275 | 6.3100 |
304
+ | 5.9787 | 5.87 | 1280 | 6.3070 |
305
+ | 5.9342 | 5.89 | 1285 | 6.3044 |
306
+ | 6.0153 | 5.92 | 1290 | 6.3018 |
307
+ | 5.9102 | 5.94 | 1295 | 6.2993 |
308
+ | 5.8239 | 5.96 | 1300 | 6.2970 |
309
+ | 5.8519 | 5.99 | 1305 | 6.2946 |
310
+ | 5.7885 | 6.01 | 1310 | 6.2925 |
311
+ | 5.7097 | 6.03 | 1315 | 6.2907 |
312
+ | 5.8986 | 6.06 | 1320 | 6.2885 |
313
+ | 5.9841 | 6.08 | 1325 | 6.2864 |
314
+ | 5.706 | 6.1 | 1330 | 6.2843 |
315
+ | 5.6936 | 6.12 | 1335 | 6.2827 |
316
+ | 5.8226 | 6.15 | 1340 | 6.2810 |
317
+ | 5.8315 | 6.17 | 1345 | 6.2791 |
318
+ | 5.9115 | 6.19 | 1350 | 6.2774 |
319
+ | 5.8574 | 6.22 | 1355 | 6.2754 |
320
+ | 5.6731 | 6.24 | 1360 | 6.2736 |
321
+ | 5.8267 | 6.26 | 1365 | 6.2719 |
322
+ | 5.9179 | 6.28 | 1370 | 6.2699 |
323
+ | 5.8623 | 6.31 | 1375 | 6.2682 |
324
+ | 5.5588 | 6.33 | 1380 | 6.2668 |
325
+ | 5.675 | 6.35 | 1385 | 6.2656 |
326
+ | 5.9247 | 6.38 | 1390 | 6.2642 |
327
+ | 5.9254 | 6.4 | 1395 | 6.2624 |
328
+ | 5.6931 | 6.42 | 1400 | 6.2608 |
329
+ | 5.872 | 6.44 | 1405 | 6.2593 |
330
+ | 5.9024 | 6.47 | 1410 | 6.2574 |
331
+ | 5.8604 | 6.49 | 1415 | 6.2557 |
332
+ | 5.7363 | 6.51 | 1420 | 6.2541 |
333
+ | 5.7869 | 6.54 | 1425 | 6.2528 |
334
+ | 6.0195 | 6.56 | 1430 | 6.2511 |
335
+ | 5.8393 | 6.58 | 1435 | 6.2493 |
336
+ | 5.7697 | 6.61 | 1440 | 6.2476 |
337
+ | 5.9471 | 6.63 | 1445 | 6.2460 |
338
+ | 5.9015 | 6.65 | 1450 | 6.2440 |
339
+ | 5.9454 | 6.67 | 1455 | 6.2419 |
340
+ | 5.9572 | 6.7 | 1460 | 6.2399 |
341
+ | 5.8503 | 6.72 | 1465 | 6.2381 |
342
+ | 5.8685 | 6.74 | 1470 | 6.2361 |
343
+ | 5.9132 | 6.77 | 1475 | 6.2344 |
344
+ | 6.0508 | 6.79 | 1480 | 6.2325 |
345
+ | 5.7752 | 6.81 | 1485 | 6.2307 |
346
+ | 5.7491 | 6.83 | 1490 | 6.2292 |
347
+ | 5.8327 | 6.86 | 1495 | 6.2279 |
348
+ | 5.8021 | 6.88 | 1500 | 6.2266 |
349
+ | 5.909 | 6.9 | 1505 | 6.2253 |
350
+ | 5.7635 | 6.93 | 1510 | 6.2237 |
351
+ | 5.7958 | 6.95 | 1515 | 6.2225 |
352
+ | 5.7834 | 6.97 | 1520 | 6.2212 |
353
+ | 5.8064 | 7.0 | 1525 | 6.2202 |
354
+ | 5.7643 | 7.02 | 1530 | 6.2191 |
355
+ | 5.7698 | 7.04 | 1535 | 6.2181 |
356
+ | 5.947 | 7.06 | 1540 | 6.2168 |
357
+ | 5.651 | 7.09 | 1545 | 6.2156 |
358
+ | 5.7821 | 7.11 | 1550 | 6.2144 |
359
+ | 5.9321 | 7.13 | 1555 | 6.2133 |
360
+ | 5.7556 | 7.16 | 1560 | 6.2122 |
361
+ | 5.9326 | 7.18 | 1565 | 6.2109 |
362
+ | 5.8153 | 7.2 | 1570 | 6.2098 |
363
+ | 5.8886 | 7.22 | 1575 | 6.2086 |
364
+ | 5.791 | 7.25 | 1580 | 6.2075 |
365
+ | 5.6872 | 7.27 | 1585 | 6.2066 |
366
+ | 5.8454 | 7.29 | 1590 | 6.2054 |
367
+ | 5.6718 | 7.32 | 1595 | 6.2045 |
368
+ | 5.94 | 7.34 | 1600 | 6.2034 |
369
+ | 5.7839 | 7.36 | 1605 | 6.2023 |
370
+ | 5.7479 | 7.39 | 1610 | 6.2014 |
371
+ | 5.7667 | 7.41 | 1615 | 6.2004 |
372
+ | 5.6903 | 7.43 | 1620 | 6.1996 |
373
+ | 5.7733 | 7.45 | 1625 | 6.1988 |
374
+ | 5.7689 | 7.48 | 1630 | 6.1978 |
375
+ | 5.6635 | 7.5 | 1635 | 6.1972 |
376
+ | 5.6859 | 7.52 | 1640 | 6.1965 |
377
+ | 5.9551 | 7.55 | 1645 | 6.1955 |
378
+ | 5.9198 | 7.57 | 1650 | 6.1945 |
379
+ | 5.8671 | 7.59 | 1655 | 6.1935 |
380
+ | 5.8787 | 7.61 | 1660 | 6.1926 |
381
+ | 5.672 | 7.64 | 1665 | 6.1916 |
382
+ | 5.6778 | 7.66 | 1670 | 6.1908 |
383
+ | 5.7932 | 7.68 | 1675 | 6.1901 |
384
+ | 5.7728 | 7.71 | 1680 | 6.1893 |
385
+ | 5.7485 | 7.73 | 1685 | 6.1885 |
386
+ | 5.7004 | 7.75 | 1690 | 6.1878 |
387
+ | 5.8689 | 7.78 | 1695 | 6.1871 |
388
+ | 5.8178 | 7.8 | 1700 | 6.1862 |
389
+ | 5.7805 | 7.82 | 1705 | 6.1855 |
390
+ | 5.6899 | 7.84 | 1710 | 6.1847 |
391
+ | 5.7139 | 7.87 | 1715 | 6.1841 |
392
+ | 5.8343 | 7.89 | 1720 | 6.1834 |
393
+ | 5.617 | 7.91 | 1725 | 6.1828 |
394
+ | 5.6653 | 7.94 | 1730 | 6.1822 |
395
+ | 5.7244 | 7.96 | 1735 | 6.1817 |
396
+ | 5.7212 | 7.98 | 1740 | 6.1811 |
397
+ | 5.8714 | 8.0 | 1745 | 6.1806 |
398
+ | 5.7405 | 8.03 | 1750 | 6.1798 |
399
+ | 5.9066 | 8.05 | 1755 | 6.1792 |
400
+ | 5.8379 | 8.07 | 1760 | 6.1786 |
401
+ | 5.8899 | 8.1 | 1765 | 6.1778 |
402
+ | 5.835 | 8.12 | 1770 | 6.1770 |
403
+ | 5.691 | 8.14 | 1775 | 6.1764 |
404
+ | 5.9066 | 8.17 | 1780 | 6.1758 |
405
+ | 5.7688 | 8.19 | 1785 | 6.1751 |
406
+ | 5.7538 | 8.21 | 1790 | 6.1746 |
407
+ | 5.6364 | 8.23 | 1795 | 6.1740 |
408
+ | 5.8411 | 8.26 | 1800 | 6.1734 |
409
+ | 5.7645 | 8.28 | 1805 | 6.1729 |
410
+ | 5.8873 | 8.3 | 1810 | 6.1723 |
411
+ | 5.5752 | 8.33 | 1815 | 6.1718 |
412
+ | 5.8784 | 8.35 | 1820 | 6.1712 |
413
+ | 5.7117 | 8.37 | 1825 | 6.1710 |
414
+ | 5.8186 | 8.39 | 1830 | 6.1704 |
415
+ | 5.6907 | 8.42 | 1835 | 6.1699 |
416
+ | 5.7 | 8.44 | 1840 | 6.1694 |
417
+ | 5.5417 | 8.46 | 1845 | 6.1692 |
418
+ | 5.8637 | 8.49 | 1850 | 6.1687 |
419
+ | 5.7281 | 8.51 | 1855 | 6.1682 |
420
+ | 5.6528 | 8.53 | 1860 | 6.1677 |
421
+ | 5.7258 | 8.56 | 1865 | 6.1674 |
422
+ | 5.7621 | 8.58 | 1870 | 6.1669 |
423
+ | 5.7232 | 8.6 | 1875 | 6.1666 |
424
+ | 5.5538 | 8.62 | 1880 | 6.1661 |
425
+ | 5.7917 | 8.65 | 1885 | 6.1658 |
426
+ | 5.8579 | 8.67 | 1890 | 6.1654 |
427
+ | 5.6824 | 8.69 | 1895 | 6.1649 |
428
+ | 5.7336 | 8.72 | 1900 | 6.1646 |
429
+ | 5.7791 | 8.74 | 1905 | 6.1641 |
430
+ | 5.5699 | 8.76 | 1910 | 6.1638 |
431
+ | 5.7826 | 8.78 | 1915 | 6.1634 |
432
+ | 5.6718 | 8.81 | 1920 | 6.1632 |
433
+ | 5.829 | 8.83 | 1925 | 6.1629 |
434
+ | 5.5786 | 8.85 | 1930 | 6.1625 |
435
+ | 5.7453 | 8.88 | 1935 | 6.1622 |
436
+ | 5.6309 | 8.9 | 1940 | 6.1620 |
437
+ | 5.7146 | 8.92 | 1945 | 6.1617 |
438
+ | 5.7131 | 8.94 | 1950 | 6.1614 |
439
+ | 5.7432 | 8.97 | 1955 | 6.1609 |
440
+ | 5.6304 | 8.99 | 1960 | 6.1607 |
441
+ | 5.6925 | 9.01 | 1965 | 6.1605 |
442
+ | 5.7406 | 9.04 | 1970 | 6.1601 |
443
+ | 5.6347 | 9.06 | 1975 | 6.1600 |
444
+ | 5.6896 | 9.08 | 1980 | 6.1597 |
445
+ | 5.6159 | 9.11 | 1985 | 6.1594 |
446
+ | 5.9093 | 9.13 | 1990 | 6.1593 |
447
+ | 5.7172 | 9.15 | 1995 | 6.1590 |
448
+ | 5.7223 | 9.17 | 2000 | 6.1587 |
449
+ | 5.6943 | 9.2 | 2005 | 6.1586 |
450
+ | 5.7278 | 9.22 | 2010 | 6.1585 |
451
+ | 5.6541 | 9.24 | 2015 | 6.1583 |
452
+ | 5.8852 | 9.27 | 2020 | 6.1580 |
453
+ | 5.8833 | 9.29 | 2025 | 6.1579 |
454
+ | 5.6182 | 9.31 | 2030 | 6.1577 |
455
+ | 5.7419 | 9.33 | 2035 | 6.1575 |
456
+ | 5.8911 | 9.36 | 2040 | 6.1572 |
457
+ | 5.6314 | 9.38 | 2045 | 6.1571 |
458
+ | 5.714 | 9.4 | 2050 | 6.1568 |
459
+ | 5.7446 | 9.43 | 2055 | 6.1566 |
460
+ | 5.7887 | 9.45 | 2060 | 6.1565 |
461
+ | 5.8779 | 9.47 | 2065 | 6.1563 |
462
+ | 5.7857 | 9.5 | 2070 | 6.1561 |
463
+ | 5.8314 | 9.52 | 2075 | 6.1560 |
464
+ | 5.584 | 9.54 | 2080 | 6.1558 |
465
+ | 5.6878 | 9.56 | 2085 | 6.1556 |
466
+ | 5.9123 | 9.59 | 2090 | 6.1555 |
467
+ | 5.7777 | 9.61 | 2095 | 6.1554 |
468
+ | 5.8798 | 9.63 | 2100 | 6.1554 |
469
+ | 5.7343 | 9.66 | 2105 | 6.1552 |
470
+ | 5.6734 | 9.68 | 2110 | 6.1550 |
471
+ | 5.6331 | 9.7 | 2115 | 6.1550 |
472
+ | 5.5947 | 9.72 | 2120 | 6.1550 |
473
+ | 5.8934 | 9.75 | 2125 | 6.1549 |
474
+ | 5.6424 | 9.77 | 2130 | 6.1548 |
475
+ | 5.4537 | 9.79 | 2135 | 6.1548 |
476
+ | 5.799 | 9.82 | 2140 | 6.1547 |
477
+ | 5.5778 | 9.84 | 2145 | 6.1546 |
478
+ | 5.6188 | 9.86 | 2150 | 6.1546 |
479
+ | 5.8389 | 9.89 | 2155 | 6.1545 |
480
+ | 5.7505 | 9.91 | 2160 | 6.1544 |
481
+ | 5.7237 | 9.93 | 2165 | 6.1544 |
482
+ | 5.7 | 9.95 | 2170 | 6.1544 |
483
+ | 5.7322 | 9.98 | 2175 | 6.1544 |
484
+ | 5.6562 | 10.0 | 2180 | 6.1544 |
485
+
486
+
487
+ ### Framework versions
488
+
489
+ - Transformers 4.34.1
490
+ - Pytorch 2.0.1+cu118
491
+ - Datasets 2.14.5
492
+ - Tokenizers 0.14.1
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepset/bert-base-cased-squad2",
3
+ "architectures": [
4
+ "BertForQuestionAnswering"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "language": "english",
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "name": "Bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 0,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.34.1",
25
+ "type_vocab_size": 2,
26
+ "use_cache": true,
27
+ "vocab_size": 28996
28
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a954cb2a21e05c116a37b75bb4ce457f19633695fa9ea11851b8ead65f7ab80b
3
+ size 430952617
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_len": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd13eb18bce38317ced69b7c56f6af4a8ea762a2931b4c92bd79522adc395ac6
3
+ size 4027
vocab.txt ADDED
The diff for this file is too large to render. See raw diff