Upload folder using huggingface_hub
Browse files- README.md +243 -0
- added_tokens.json +684 -0
- config.json +116 -0
- model.safetensors +3 -0
- preprocessors.json +0 -0
- special_tokens_map.json +0 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
language: en
|
4 |
+
license: apache-2.0
|
5 |
+
base_model: google/bert_uncased_L-4_H-256_A-4
|
6 |
+
tags:
|
7 |
+
- tld
|
8 |
+
- embeddings
|
9 |
+
- domains
|
10 |
+
- multi-task-learning
|
11 |
+
- bert
|
12 |
+
pipeline_tag: feature-extraction
|
13 |
+
widget:
|
14 |
+
- text: "com"
|
15 |
+
- text: "io"
|
16 |
+
- text: "ai"
|
17 |
+
- text: "co.za"
|
18 |
+
model-index:
|
19 |
+
- name: TLD Embedding Model
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
type: feature-extraction
|
23 |
+
name: TLD Embedding
|
24 |
+
metrics:
|
25 |
+
- type: spearman_correlation
|
26 |
+
value: 0.8976
|
27 |
+
name: Average Spearman Correlation
|
28 |
+
---
|
29 |
+
|
30 |
+
# TLD Embedding Model
|
31 |
+
|
32 |
+
A state-of-the-art TLD (Top-Level Domain) embedding model that learns rich 96-dimensional representations from multiple data sources through multi-task learning. This model achieved an exceptional **0.8976 average Spearman correlation** across 63 features during training.
|
33 |
+
|
34 |
+
## Model Overview
|
35 |
+
|
36 |
+
This TLD embedding model creates semantic representations by jointly learning from four complementary prediction tasks:
|
37 |
+
|
38 |
+
1. **Research Metrics** (18 features): Brand perception, trust scores, memorability, premium brand indices
|
39 |
+
2. **Technical Metrics** (5 features): Registration statistics, domain rankings, usage patterns
|
40 |
+
3. **Economic Indicators** (21 features): Country-level GDP sector breakdowns mapped to TLD registries
|
41 |
+
4. **Price Predictions** (18 features): Industry-specific market value scores from domain sales data
|
42 |
+
|
43 |
+
The model uses a shared BERT encoder with task-specific prediction heads, enabling the embeddings to capture semantic, technical, economic, and market value aspects of each TLD.
|
44 |
+
|
45 |
+
## Training Performance
|
46 |
+
|
47 |
+
**Final Training Results (Epoch 25/25):**
|
48 |
+
- **Overall Average Score**: 0.8976 (89.76% Spearman correlation)
|
49 |
+
- **Training Loss**: 0.0034
|
50 |
+
|
51 |
+
**Task-Specific Performance:**
|
52 |
+
- **Research Task**: 0.80+ correlation on trust, adoption, and brand metrics
|
53 |
+
- **Technical Task**: 0.93-0.99 correlation on registration and ranking metrics
|
54 |
+
- **Economic Task**: 0.89-0.96 correlation on GDP sector predictions
|
55 |
+
- **Price Task**: 0.90-0.99 correlation on industry-specific price scores
|
56 |
+
|
57 |
+
**Best Individual Metrics:**
|
58 |
+
- `overall_score`: 0.990 Spearman correlation
|
59 |
+
- `global_top_1m_share`: 0.993 Spearman correlation
|
60 |
+
- `score_food`: 0.973 Spearman correlation
|
61 |
+
- `three_letter_registration_percent`: 0.969 Spearman correlation
|
62 |
+
|
63 |
+
## Architecture
|
64 |
+
|
65 |
+
- **Base Model**: `google/bert_uncased_L-4_H-256_A-4` (Lightweight BERT)
|
66 |
+
- **Embedding Dimension**: 96 (optimized for data size)
|
67 |
+
- **Max Sequence Length**: 8 tokens (optimized for TLDs)
|
68 |
+
- **MLP Hidden Size**: 192 with 15% dropout
|
69 |
+
- **Task Weighting**: Research(0.25), Technical(0.20), Economic(0.15), Price(0.40)
|
70 |
+
|
71 |
+
## Training Data Sources
|
72 |
+
|
73 |
+
### Research Data (`tld_research_data.jsonl`)
|
74 |
+
- **Coverage**: 150 TLDs with research metrics
|
75 |
+
- **Features**: Trust scores, brand associations, memorability, adoption rates
|
76 |
+
- **Source**: Survey data, brand perception studies, market research
|
77 |
+
|
78 |
+
### Technical Data (`tld_technical_data.jsonl`)
|
79 |
+
- **Coverage**: 716 TLDs with technical metrics
|
80 |
+
- **Features**: Registration patterns, domain rankings (Majestic), sales volumes
|
81 |
+
- **Source**: Registry statistics, web crawl data, domain marketplaces
|
82 |
+
|
83 |
+
### Economic Data (`country_economic_data.jsonl`)
|
84 |
+
- **Coverage**: 126 TLDs mapped to country economies
|
85 |
+
- **Features**: GDP breakdowns by 21 industry sectors
|
86 |
+
- **Source**: World Bank, IMF economic data mapped to ccTLD registries
|
87 |
+
|
88 |
+
### Price Data (`tld_price_scores_by_industry_2025.csv`)
|
89 |
+
- **Coverage**: 722 TLDs with price predictions
|
90 |
+
- **Features**: 18 industry-specific price scores plus overall score
|
91 |
+
- **Source**: Domain sales data processed through pairwise neural network (`compute_tld_scores_pairwise.py`)
|
92 |
+
- **Industries**: Finance, healthcare, technology, automotive, food, gaming, etc.
|
93 |
+
|
94 |
+
## Installation & Usage
|
95 |
+
|
96 |
+
### Loading the Model
|
97 |
+
|
98 |
+
```python
|
99 |
+
from transformers import AutoTokenizer, AutoModel
|
100 |
+
import torch
|
101 |
+
|
102 |
+
# Load model and tokenizer
|
103 |
+
model_name = "humbleworth/tld-embedding"
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
105 |
+
model = AutoModel.from_pretrained(model_name)
|
106 |
+
model.eval()
|
107 |
+
```
|
108 |
+
|
109 |
+
### Getting TLD Embeddings
|
110 |
+
|
111 |
+
```python
|
112 |
+
def get_tld_embedding(tld, model, tokenizer):
|
113 |
+
"""Get 96-dimensional embedding for a single TLD"""
|
114 |
+
# Use special token format if available, otherwise prefix with dot
|
115 |
+
tld_text = f"[TLD_{tld}]" if f"[TLD_{tld}]" in tokenizer.vocab else f".{tld}"
|
116 |
+
|
117 |
+
inputs = tokenizer(
|
118 |
+
tld_text,
|
119 |
+
return_tensors="pt",
|
120 |
+
padding="max_length",
|
121 |
+
truncation=True,
|
122 |
+
max_length=8
|
123 |
+
)
|
124 |
+
|
125 |
+
with torch.no_grad():
|
126 |
+
outputs = model.encoder(**inputs)
|
127 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
128 |
+
tld_embedding = model.projection(cls_embedding)
|
129 |
+
|
130 |
+
return tld_embedding.squeeze().numpy()
|
131 |
+
|
132 |
+
# Example
|
133 |
+
com_embedding = get_tld_embedding("com", model, tokenizer)
|
134 |
+
print(f"Embedding shape: {com_embedding.shape}") # (96,)
|
135 |
+
```
|
136 |
+
|
137 |
+
### Batch Processing
|
138 |
+
|
139 |
+
```python
|
140 |
+
def get_tld_embeddings_batch(tlds, model, tokenizer):
|
141 |
+
"""Get embeddings for multiple TLDs efficiently"""
|
142 |
+
# Use special token format if available, otherwise prefix with dot
|
143 |
+
tld_texts = [f"[TLD_{tld}]" if f"[TLD_{tld}]" in tokenizer.vocab else f".{tld}" for tld in tlds]
|
144 |
+
|
145 |
+
inputs = tokenizer(
|
146 |
+
tld_texts,
|
147 |
+
return_tensors="pt",
|
148 |
+
padding="max_length",
|
149 |
+
truncation=True,
|
150 |
+
max_length=8
|
151 |
+
)
|
152 |
+
|
153 |
+
with torch.no_grad():
|
154 |
+
outputs = model.encoder(**inputs)
|
155 |
+
cls_embeddings = outputs.last_hidden_state[:, 0, :]
|
156 |
+
tld_embeddings = model.projection(cls_embeddings)
|
157 |
+
|
158 |
+
return tld_embeddings.numpy()
|
159 |
+
|
160 |
+
# Process multiple TLDs
|
161 |
+
tlds = ["com", "io", "ai", "co.za", "tech"]
|
162 |
+
embeddings = get_tld_embeddings_batch(tlds, model, tokenizer)
|
163 |
+
print(f"Embeddings shape: {embeddings.shape}") # (5, 96)
|
164 |
+
```
|
165 |
+
|
166 |
+
## Key Features
|
167 |
+
|
168 |
+
### Multi-Task Learning Benefits
|
169 |
+
- **Robust Representations**: Joint learning across diverse tasks creates more stable embeddings
|
170 |
+
- **Transfer Learning**: Knowledge from technical metrics improves price prediction and vice versa
|
171 |
+
- **Percentile Normalization**: All features converted to percentiles for balanced learning
|
172 |
+
|
173 |
+
### Industry-Specific Intelligence
|
174 |
+
- **18 Industry Scores**: Specialized predictions for finance, technology, healthcare, etc.
|
175 |
+
- **Economic Mapping**: Country-level economic data enhances ccTLD understanding
|
176 |
+
- **Market Dynamics**: Real domain sales data captures market preferences
|
177 |
+
|
178 |
+
### Technical Optimizations
|
179 |
+
- **MPS Support**: Optimized for Apple Silicon (M1/M2) training
|
180 |
+
- **Gradient Accumulation**: Stable training with effective batch size of 64
|
181 |
+
- **Early Stopping**: Prevents overfitting with patience-based stopping
|
182 |
+
- **Task Weighting**: Balanced learning prioritizing price prediction (40% weight)
|
183 |
+
|
184 |
+
## Use Cases
|
185 |
+
|
186 |
+
1. **Domain Valuation**: Use embeddings as features for ML-based domain appraisal
|
187 |
+
2. **TLD Recommendation**: Find similar TLDs for branding or investment decisions
|
188 |
+
3. **Market Analysis**: Cluster TLDs by business characteristics or market positioning
|
189 |
+
4. **Portfolio Optimization**: Analyze TLD portfolios using semantic similarity
|
190 |
+
5. **Cross-Market Analysis**: Compare TLD performance across different industries
|
191 |
+
|
192 |
+
## Training Configuration
|
193 |
+
|
194 |
+
**Optimal Hyperparameters (Based on Data Analysis):**
|
195 |
+
- Epochs: 25 (early stopping at patience=5)
|
196 |
+
- Batch Size: 16 (effective 64 with accumulation)
|
197 |
+
- Learning Rate: 5e-4 with warmup
|
198 |
+
- Warmup Steps: 200
|
199 |
+
- Gradient Accumulation: 4 steps
|
200 |
+
- Dropout: 15%
|
201 |
+
|
202 |
+
**Training Command:**
|
203 |
+
```bash
|
204 |
+
python train_dual_task_embeddings.py \
|
205 |
+
--epochs 25 \
|
206 |
+
--batch-size 16 \
|
207 |
+
--learning-rate 5e-4 \
|
208 |
+
--warmup-steps 200 \
|
209 |
+
--output-dir models/tld_embedding_model
|
210 |
+
```
|
211 |
+
|
212 |
+
## Model Files
|
213 |
+
|
214 |
+
```
|
215 |
+
tld_embedding_model/
|
216 |
+
├── config.json # Model configuration
|
217 |
+
├── pytorch_model.bin # Model weights
|
218 |
+
├── tokenizer.json # Tokenizer
|
219 |
+
├── tokenizer_config.json # Tokenizer config
|
220 |
+
├── vocab.txt # Vocabulary
|
221 |
+
├── special_tokens_map.json # Special tokens
|
222 |
+
├── training_metrics.pt # Training metrics
|
223 |
+
├── tld_embeddings.json # Pre-computed embeddings
|
224 |
+
└── README.md # This file
|
225 |
+
```
|
226 |
+
|
227 |
+
## Citation
|
228 |
+
|
229 |
+
If you use this model in your research, please cite:
|
230 |
+
|
231 |
+
```bibtex
|
232 |
+
@software{tld_embedding_2025,
|
233 |
+
title = {TLD Embedding Model: Multi-Task Learning for Domain Extensions},
|
234 |
+
author = {HumbleWorth},
|
235 |
+
year = {2025},
|
236 |
+
note = {Achieved 0.8976 average Spearman correlation across 63 features},
|
237 |
+
url = {https://huggingface.co/humbleworth/tld-embedding}
|
238 |
+
}
|
239 |
+
```
|
240 |
+
|
241 |
+
## License
|
242 |
+
|
243 |
+
This model is released under the Apache 2.0 License.
|
added_tokens.json
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[TLD_ac.at]": 30523,
|
3 |
+
"[TLD_ac.cn]": 30524,
|
4 |
+
"[TLD_ac.id]": 30525,
|
5 |
+
"[TLD_ac.il]": 30526,
|
6 |
+
"[TLD_ac.in]": 30527,
|
7 |
+
"[TLD_ac.ir]": 30528,
|
8 |
+
"[TLD_ac.jp]": 30529,
|
9 |
+
"[TLD_ac.ke]": 30530,
|
10 |
+
"[TLD_ac.kr]": 30531,
|
11 |
+
"[TLD_ac.nz]": 30532,
|
12 |
+
"[TLD_ac.th]": 30533,
|
13 |
+
"[TLD_ac.uk]": 30534,
|
14 |
+
"[TLD_ac.za]": 30535,
|
15 |
+
"[TLD_ac]": 30522,
|
16 |
+
"[TLD_academy]": 30536,
|
17 |
+
"[TLD_accountants]": 30537,
|
18 |
+
"[TLD_ad]": 30538,
|
19 |
+
"[TLD_ae]": 30539,
|
20 |
+
"[TLD_aero]": 30540,
|
21 |
+
"[TLD_africa]": 30541,
|
22 |
+
"[TLD_ag]": 30542,
|
23 |
+
"[TLD_agency]": 30543,
|
24 |
+
"[TLD_ai]": 30544,
|
25 |
+
"[TLD_al]": 30545,
|
26 |
+
"[TLD_am]": 30546,
|
27 |
+
"[TLD_apartments]": 30547,
|
28 |
+
"[TLD_app]": 30548,
|
29 |
+
"[TLD_ar]": 30549,
|
30 |
+
"[TLD_archi]": 30550,
|
31 |
+
"[TLD_art]": 30551,
|
32 |
+
"[TLD_as]": 30552,
|
33 |
+
"[TLD_asia]": 30553,
|
34 |
+
"[TLD_asn.au]": 30554,
|
35 |
+
"[TLD_associates]": 30555,
|
36 |
+
"[TLD_at]": 30556,
|
37 |
+
"[TLD_au]": 30557,
|
38 |
+
"[TLD_auction]": 30558,
|
39 |
+
"[TLD_audio]": 30559,
|
40 |
+
"[TLD_autos]": 30560,
|
41 |
+
"[TLD_az]": 30561,
|
42 |
+
"[TLD_ba]": 30562,
|
43 |
+
"[TLD_baby]": 30563,
|
44 |
+
"[TLD_band]": 30564,
|
45 |
+
"[TLD_bank]": 30565,
|
46 |
+
"[TLD_bar]": 30566,
|
47 |
+
"[TLD_bargains]": 30567,
|
48 |
+
"[TLD_be]": 30568,
|
49 |
+
"[TLD_beauty]": 30569,
|
50 |
+
"[TLD_beer]": 30570,
|
51 |
+
"[TLD_bel.tr]": 30571,
|
52 |
+
"[TLD_berlin]": 30572,
|
53 |
+
"[TLD_best]": 30573,
|
54 |
+
"[TLD_bet]": 30574,
|
55 |
+
"[TLD_bg]": 30575,
|
56 |
+
"[TLD_bid]": 30576,
|
57 |
+
"[TLD_bike]": 30577,
|
58 |
+
"[TLD_bingo]": 30578,
|
59 |
+
"[TLD_bio]": 30579,
|
60 |
+
"[TLD_biz.pl]": 30581,
|
61 |
+
"[TLD_biz]": 30580,
|
62 |
+
"[TLD_black]": 30582,
|
63 |
+
"[TLD_blog]": 30583,
|
64 |
+
"[TLD_blue]": 30584,
|
65 |
+
"[TLD_bo]": 30585,
|
66 |
+
"[TLD_boats]": 30586,
|
67 |
+
"[TLD_bond]": 30587,
|
68 |
+
"[TLD_boston]": 30588,
|
69 |
+
"[TLD_boutique]": 30589,
|
70 |
+
"[TLD_br]": 30590,
|
71 |
+
"[TLD_brussels]": 30591,
|
72 |
+
"[TLD_builders]": 30592,
|
73 |
+
"[TLD_business]": 30593,
|
74 |
+
"[TLD_buzz]": 30594,
|
75 |
+
"[TLD_by]": 30595,
|
76 |
+
"[TLD_bz]": 30596,
|
77 |
+
"[TLD_bzh]": 30597,
|
78 |
+
"[TLD_ca]": 30598,
|
79 |
+
"[TLD_cab]": 30599,
|
80 |
+
"[TLD_cafe]": 30600,
|
81 |
+
"[TLD_cam]": 30601,
|
82 |
+
"[TLD_camera]": 30602,
|
83 |
+
"[TLD_camp]": 30603,
|
84 |
+
"[TLD_capital]": 30604,
|
85 |
+
"[TLD_cards]": 30605,
|
86 |
+
"[TLD_care]": 30606,
|
87 |
+
"[TLD_casa]": 30607,
|
88 |
+
"[TLD_cash]": 30608,
|
89 |
+
"[TLD_casino]": 30609,
|
90 |
+
"[TLD_cat]": 30610,
|
91 |
+
"[TLD_cc]": 30611,
|
92 |
+
"[TLD_cd]": 30612,
|
93 |
+
"[TLD_center]": 30613,
|
94 |
+
"[TLD_ceo]": 30614,
|
95 |
+
"[TLD_cf]": 30615,
|
96 |
+
"[TLD_cfd]": 30616,
|
97 |
+
"[TLD_ch]": 30617,
|
98 |
+
"[TLD_charity]": 30618,
|
99 |
+
"[TLD_chat]": 30619,
|
100 |
+
"[TLD_cheap]": 30620,
|
101 |
+
"[TLD_christmas]": 30621,
|
102 |
+
"[TLD_church]": 30622,
|
103 |
+
"[TLD_ci]": 30623,
|
104 |
+
"[TLD_city]": 30624,
|
105 |
+
"[TLD_cl]": 30625,
|
106 |
+
"[TLD_claims]": 30626,
|
107 |
+
"[TLD_click]": 30627,
|
108 |
+
"[TLD_clinic]": 30628,
|
109 |
+
"[TLD_clothing]": 30629,
|
110 |
+
"[TLD_cloud]": 30630,
|
111 |
+
"[TLD_club]": 30631,
|
112 |
+
"[TLD_cm]": 30632,
|
113 |
+
"[TLD_cn]": 30633,
|
114 |
+
"[TLD_co.at]": 30635,
|
115 |
+
"[TLD_co.id]": 30636,
|
116 |
+
"[TLD_co.il]": 30637,
|
117 |
+
"[TLD_co.in]": 30638,
|
118 |
+
"[TLD_co.jp]": 30639,
|
119 |
+
"[TLD_co.ke]": 30640,
|
120 |
+
"[TLD_co.kr]": 30641,
|
121 |
+
"[TLD_co.nz]": 30642,
|
122 |
+
"[TLD_co.th]": 30643,
|
123 |
+
"[TLD_co.tz]": 30644,
|
124 |
+
"[TLD_co.uk]": 30645,
|
125 |
+
"[TLD_co.za]": 30646,
|
126 |
+
"[TLD_co.zw]": 30647,
|
127 |
+
"[TLD_co]": 30634,
|
128 |
+
"[TLD_coach]": 30648,
|
129 |
+
"[TLD_codes]": 30649,
|
130 |
+
"[TLD_coffee]": 30650,
|
131 |
+
"[TLD_com.ar]": 30652,
|
132 |
+
"[TLD_com.au]": 30653,
|
133 |
+
"[TLD_com.az]": 30654,
|
134 |
+
"[TLD_com.bd]": 30655,
|
135 |
+
"[TLD_com.br]": 30656,
|
136 |
+
"[TLD_com.bz]": 30657,
|
137 |
+
"[TLD_com.cn]": 30658,
|
138 |
+
"[TLD_com.co]": 30659,
|
139 |
+
"[TLD_com.cy]": 30660,
|
140 |
+
"[TLD_com.do]": 30661,
|
141 |
+
"[TLD_com.ec]": 30662,
|
142 |
+
"[TLD_com.eg]": 30663,
|
143 |
+
"[TLD_com.es]": 30664,
|
144 |
+
"[TLD_com.gh]": 30665,
|
145 |
+
"[TLD_com.hk]": 30666,
|
146 |
+
"[TLD_com.in]": 30667,
|
147 |
+
"[TLD_com.kg]": 30668,
|
148 |
+
"[TLD_com.mt]": 30669,
|
149 |
+
"[TLD_com.mx]": 30670,
|
150 |
+
"[TLD_com.my]": 30671,
|
151 |
+
"[TLD_com.ng]": 30672,
|
152 |
+
"[TLD_com.np]": 30673,
|
153 |
+
"[TLD_com.pe]": 30674,
|
154 |
+
"[TLD_com.ph]": 30675,
|
155 |
+
"[TLD_com.pk]": 30676,
|
156 |
+
"[TLD_com.pl]": 30677,
|
157 |
+
"[TLD_com.py]": 30678,
|
158 |
+
"[TLD_com.sa]": 30679,
|
159 |
+
"[TLD_com.sg]": 30680,
|
160 |
+
"[TLD_com.tr]": 30681,
|
161 |
+
"[TLD_com.tw]": 30682,
|
162 |
+
"[TLD_com.ua]": 30683,
|
163 |
+
"[TLD_com.uy]": 30684,
|
164 |
+
"[TLD_com.vc]": 30685,
|
165 |
+
"[TLD_com.ve]": 30686,
|
166 |
+
"[TLD_com.vn]": 30687,
|
167 |
+
"[TLD_com]": 30651,
|
168 |
+
"[TLD_community]": 30688,
|
169 |
+
"[TLD_company]": 30689,
|
170 |
+
"[TLD_computer]": 30690,
|
171 |
+
"[TLD_construction]": 30691,
|
172 |
+
"[TLD_consulting]": 30692,
|
173 |
+
"[TLD_contact]": 30693,
|
174 |
+
"[TLD_contractors]": 30694,
|
175 |
+
"[TLD_cooking]": 30695,
|
176 |
+
"[TLD_cool]": 30696,
|
177 |
+
"[TLD_coop]": 30697,
|
178 |
+
"[TLD_country]": 30698,
|
179 |
+
"[TLD_coupons]": 30699,
|
180 |
+
"[TLD_credit]": 30700,
|
181 |
+
"[TLD_cruises]": 30701,
|
182 |
+
"[TLD_cu]": 30702,
|
183 |
+
"[TLD_cx]": 30703,
|
184 |
+
"[TLD_cyou]": 30704,
|
185 |
+
"[TLD_cz]": 30705,
|
186 |
+
"[TLD_dance]": 30706,
|
187 |
+
"[TLD_date]": 30707,
|
188 |
+
"[TLD_dating]": 30708,
|
189 |
+
"[TLD_de]": 30709,
|
190 |
+
"[TLD_deals]": 30710,
|
191 |
+
"[TLD_delivery]": 30711,
|
192 |
+
"[TLD_dental]": 30712,
|
193 |
+
"[TLD_desi]": 30713,
|
194 |
+
"[TLD_design]": 30714,
|
195 |
+
"[TLD_dev]": 30715,
|
196 |
+
"[TLD_diamonds]": 30716,
|
197 |
+
"[TLD_diet]": 30717,
|
198 |
+
"[TLD_digital]": 30718,
|
199 |
+
"[TLD_direct]": 30719,
|
200 |
+
"[TLD_directory]": 30720,
|
201 |
+
"[TLD_discount]": 30721,
|
202 |
+
"[TLD_dj]": 30722,
|
203 |
+
"[TLD_dk]": 30723,
|
204 |
+
"[TLD_do]": 30724,
|
205 |
+
"[TLD_doctor]": 30725,
|
206 |
+
"[TLD_dog]": 30726,
|
207 |
+
"[TLD_domains]": 30727,
|
208 |
+
"[TLD_download]": 30728,
|
209 |
+
"[TLD_dz]": 30729,
|
210 |
+
"[TLD_earth]": 30730,
|
211 |
+
"[TLD_ec]": 30731,
|
212 |
+
"[TLD_eco]": 30732,
|
213 |
+
"[TLD_ed.jp]": 30733,
|
214 |
+
"[TLD_edu.ar]": 30735,
|
215 |
+
"[TLD_edu.au]": 30736,
|
216 |
+
"[TLD_edu.br]": 30737,
|
217 |
+
"[TLD_edu.cn]": 30738,
|
218 |
+
"[TLD_edu.co]": 30739,
|
219 |
+
"[TLD_edu.ec]": 30740,
|
220 |
+
"[TLD_edu.eg]": 30741,
|
221 |
+
"[TLD_edu.hk]": 30742,
|
222 |
+
"[TLD_edu.in]": 30743,
|
223 |
+
"[TLD_edu.mx]": 30744,
|
224 |
+
"[TLD_edu.my]": 30745,
|
225 |
+
"[TLD_edu.ng]": 30746,
|
226 |
+
"[TLD_edu.pe]": 30747,
|
227 |
+
"[TLD_edu.ph]": 30748,
|
228 |
+
"[TLD_edu.pk]": 30749,
|
229 |
+
"[TLD_edu.pl]": 30750,
|
230 |
+
"[TLD_edu.sa]": 30751,
|
231 |
+
"[TLD_edu.sg]": 30752,
|
232 |
+
"[TLD_edu.tr]": 30753,
|
233 |
+
"[TLD_edu.tw]": 30754,
|
234 |
+
"[TLD_edu.ua]": 30755,
|
235 |
+
"[TLD_edu.uy]": 30756,
|
236 |
+
"[TLD_edu.vn]": 30757,
|
237 |
+
"[TLD_edu]": 30734,
|
238 |
+
"[TLD_education]": 30758,
|
239 |
+
"[TLD_ee]": 30759,
|
240 |
+
"[TLD_email]": 30760,
|
241 |
+
"[TLD_energy]": 30761,
|
242 |
+
"[TLD_engineering]": 30762,
|
243 |
+
"[TLD_enterprises]": 30763,
|
244 |
+
"[TLD_equipment]": 30764,
|
245 |
+
"[TLD_es]": 30765,
|
246 |
+
"[TLD_estate]": 30766,
|
247 |
+
"[TLD_et]": 30767,
|
248 |
+
"[TLD_eu]": 30768,
|
249 |
+
"[TLD_eus]": 30769,
|
250 |
+
"[TLD_events]": 30770,
|
251 |
+
"[TLD_exchange]": 30771,
|
252 |
+
"[TLD_expert]": 30772,
|
253 |
+
"[TLD_exposed]": 30773,
|
254 |
+
"[TLD_express]": 30774,
|
255 |
+
"[TLD_fail]": 30775,
|
256 |
+
"[TLD_faith]": 30776,
|
257 |
+
"[TLD_family]": 30777,
|
258 |
+
"[TLD_fan]": 30778,
|
259 |
+
"[TLD_fans]": 30779,
|
260 |
+
"[TLD_farm]": 30780,
|
261 |
+
"[TLD_fashion]": 30781,
|
262 |
+
"[TLD_fi]": 30782,
|
263 |
+
"[TLD_finance]": 30783,
|
264 |
+
"[TLD_financial]": 30784,
|
265 |
+
"[TLD_fish]": 30785,
|
266 |
+
"[TLD_fit]": 30786,
|
267 |
+
"[TLD_fitness]": 30787,
|
268 |
+
"[TLD_flowers]": 30788,
|
269 |
+
"[TLD_fm]": 30789,
|
270 |
+
"[TLD_football]": 30790,
|
271 |
+
"[TLD_forsale]": 30791,
|
272 |
+
"[TLD_foundation]": 30792,
|
273 |
+
"[TLD_fr]": 30793,
|
274 |
+
"[TLD_fun]": 30794,
|
275 |
+
"[TLD_fund]": 30795,
|
276 |
+
"[TLD_furniture]": 30796,
|
277 |
+
"[TLD_fyi]": 30797,
|
278 |
+
"[TLD_gal]": 30798,
|
279 |
+
"[TLD_gallery]": 30799,
|
280 |
+
"[TLD_game]": 30800,
|
281 |
+
"[TLD_games]": 30801,
|
282 |
+
"[TLD_garden]": 30802,
|
283 |
+
"[TLD_gd]": 30803,
|
284 |
+
"[TLD_gdn]": 30804,
|
285 |
+
"[TLD_ge]": 30805,
|
286 |
+
"[TLD_gen.tr]": 30806,
|
287 |
+
"[TLD_gg]": 30807,
|
288 |
+
"[TLD_gift]": 30808,
|
289 |
+
"[TLD_gifts]": 30809,
|
290 |
+
"[TLD_gives]": 30810,
|
291 |
+
"[TLD_gl]": 30811,
|
292 |
+
"[TLD_glass]": 30812,
|
293 |
+
"[TLD_global]": 30813,
|
294 |
+
"[TLD_go.jp]": 30814,
|
295 |
+
"[TLD_gold]": 30815,
|
296 |
+
"[TLD_golf]": 30816,
|
297 |
+
"[TLD_google]": 30817,
|
298 |
+
"[TLD_gov.ae]": 30819,
|
299 |
+
"[TLD_gov.ar]": 30820,
|
300 |
+
"[TLD_gov.au]": 30821,
|
301 |
+
"[TLD_gov.bd]": 30822,
|
302 |
+
"[TLD_gov.br]": 30823,
|
303 |
+
"[TLD_gov.by]": 30824,
|
304 |
+
"[TLD_gov.cn]": 30825,
|
305 |
+
"[TLD_gov.co]": 30826,
|
306 |
+
"[TLD_gov.eg]": 30827,
|
307 |
+
"[TLD_gov.gr]": 30828,
|
308 |
+
"[TLD_gov.hk]": 30829,
|
309 |
+
"[TLD_gov.il]": 30830,
|
310 |
+
"[TLD_gov.in]": 30831,
|
311 |
+
"[TLD_gov.it]": 30832,
|
312 |
+
"[TLD_gov.kh]": 30833,
|
313 |
+
"[TLD_gov.lk]": 30834,
|
314 |
+
"[TLD_gov.lv]": 30835,
|
315 |
+
"[TLD_gov.mo]": 30836,
|
316 |
+
"[TLD_gov.my]": 30837,
|
317 |
+
"[TLD_gov.ng]": 30838,
|
318 |
+
"[TLD_gov.np]": 30839,
|
319 |
+
"[TLD_gov.ph]": 30840,
|
320 |
+
"[TLD_gov.pk]": 30841,
|
321 |
+
"[TLD_gov.pl]": 30842,
|
322 |
+
"[TLD_gov.pt]": 30843,
|
323 |
+
"[TLD_gov.rs]": 30844,
|
324 |
+
"[TLD_gov.sa]": 30845,
|
325 |
+
"[TLD_gov.sg]": 30846,
|
326 |
+
"[TLD_gov.tr]": 30847,
|
327 |
+
"[TLD_gov.tw]": 30848,
|
328 |
+
"[TLD_gov.ua]": 30849,
|
329 |
+
"[TLD_gov.uk]": 30850,
|
330 |
+
"[TLD_gov.vn]": 30851,
|
331 |
+
"[TLD_gov.za]": 30852,
|
332 |
+
"[TLD_gov]": 30818,
|
333 |
+
"[TLD_gr.jp]": 30854,
|
334 |
+
"[TLD_gr]": 30853,
|
335 |
+
"[TLD_graphics]": 30855,
|
336 |
+
"[TLD_gratis]": 30856,
|
337 |
+
"[TLD_green]": 30857,
|
338 |
+
"[TLD_group]": 30858,
|
339 |
+
"[TLD_gs]": 30859,
|
340 |
+
"[TLD_guide]": 30860,
|
341 |
+
"[TLD_guru]": 30861,
|
342 |
+
"[TLD_gy]": 30862,
|
343 |
+
"[TLD_hair]": 30863,
|
344 |
+
"[TLD_haus]": 30864,
|
345 |
+
"[TLD_health]": 30865,
|
346 |
+
"[TLD_healthcare]": 30866,
|
347 |
+
"[TLD_help]": 30867,
|
348 |
+
"[TLD_hk]": 30868,
|
349 |
+
"[TLD_hn]": 30869,
|
350 |
+
"[TLD_hockey]": 30870,
|
351 |
+
"[TLD_holdings]": 30871,
|
352 |
+
"[TLD_holiday]": 30872,
|
353 |
+
"[TLD_homes]": 30873,
|
354 |
+
"[TLD_horse]": 30874,
|
355 |
+
"[TLD_host]": 30875,
|
356 |
+
"[TLD_hosting]": 30876,
|
357 |
+
"[TLD_house]": 30877,
|
358 |
+
"[TLD_hr]": 30878,
|
359 |
+
"[TLD_ht]": 30879,
|
360 |
+
"[TLD_hu]": 30880,
|
361 |
+
"[TLD_icu]": 30881,
|
362 |
+
"[TLD_id]": 30882,
|
363 |
+
"[TLD_ie]": 30883,
|
364 |
+
"[TLD_im]": 30884,
|
365 |
+
"[TLD_immobilien]": 30885,
|
366 |
+
"[TLD_in]": 30886,
|
367 |
+
"[TLD_inc]": 30887,
|
368 |
+
"[TLD_info.pl]": 30889,
|
369 |
+
"[TLD_info]": 30888,
|
370 |
+
"[TLD_ink]": 30890,
|
371 |
+
"[TLD_institute]": 30891,
|
372 |
+
"[TLD_insure]": 30892,
|
373 |
+
"[TLD_int]": 30893,
|
374 |
+
"[TLD_international]": 30894,
|
375 |
+
"[TLD_investments]": 30895,
|
376 |
+
"[TLD_io]": 30896,
|
377 |
+
"[TLD_ir]": 30897,
|
378 |
+
"[TLD_irish]": 30898,
|
379 |
+
"[TLD_is]": 30899,
|
380 |
+
"[TLD_it]": 30900,
|
381 |
+
"[TLD_je]": 30901,
|
382 |
+
"[TLD_jewelry]": 30902,
|
383 |
+
"[TLD_jobs]": 30903,
|
384 |
+
"[TLD_jp]": 30904,
|
385 |
+
"[TLD_kaufen]": 30905,
|
386 |
+
"[TLD_kg]": 30906,
|
387 |
+
"[TLD_kim]": 30907,
|
388 |
+
"[TLD_kitchen]": 30908,
|
389 |
+
"[TLD_kr]": 30909,
|
390 |
+
"[TLD_kz]": 30910,
|
391 |
+
"[TLD_la]": 30911,
|
392 |
+
"[TLD_land]": 30912,
|
393 |
+
"[TLD_lat]": 30913,
|
394 |
+
"[TLD_law]": 30914,
|
395 |
+
"[TLD_lawyer]": 30915,
|
396 |
+
"[TLD_lc]": 30916,
|
397 |
+
"[TLD_lease]": 30917,
|
398 |
+
"[TLD_legal]": 30918,
|
399 |
+
"[TLD_lg.jp]": 30919,
|
400 |
+
"[TLD_lgbt]": 30920,
|
401 |
+
"[TLD_li]": 30921,
|
402 |
+
"[TLD_life]": 30922,
|
403 |
+
"[TLD_lighting]": 30923,
|
404 |
+
"[TLD_limited]": 30924,
|
405 |
+
"[TLD_limo]": 30925,
|
406 |
+
"[TLD_link]": 30926,
|
407 |
+
"[TLD_live]": 30927,
|
408 |
+
"[TLD_lk]": 30928,
|
409 |
+
"[TLD_llc]": 30929,
|
410 |
+
"[TLD_loan]": 30930,
|
411 |
+
"[TLD_loans]": 30931,
|
412 |
+
"[TLD_lol]": 30932,
|
413 |
+
"[TLD_london]": 30933,
|
414 |
+
"[TLD_love]": 30934,
|
415 |
+
"[TLD_lt]": 30935,
|
416 |
+
"[TLD_ltd]": 30936,
|
417 |
+
"[TLD_lu]": 30937,
|
418 |
+
"[TLD_luxe]": 30938,
|
419 |
+
"[TLD_luxury]": 30939,
|
420 |
+
"[TLD_lv]": 30940,
|
421 |
+
"[TLD_ly]": 30941,
|
422 |
+
"[TLD_ma]": 30942,
|
423 |
+
"[TLD_makeup]": 30943,
|
424 |
+
"[TLD_management]": 30944,
|
425 |
+
"[TLD_market]": 30945,
|
426 |
+
"[TLD_marketing]": 30946,
|
427 |
+
"[TLD_mba]": 30947,
|
428 |
+
"[TLD_md]": 30948,
|
429 |
+
"[TLD_me.uk]": 30950,
|
430 |
+
"[TLD_me]": 30949,
|
431 |
+
"[TLD_media.pl]": 30952,
|
432 |
+
"[TLD_media]": 30951,
|
433 |
+
"[TLD_men]": 30953,
|
434 |
+
"[TLD_miami]": 30954,
|
435 |
+
"[TLD_mil]": 30955,
|
436 |
+
"[TLD_mk]": 30956,
|
437 |
+
"[TLD_ml]": 30957,
|
438 |
+
"[TLD_mn]": 30958,
|
439 |
+
"[TLD_mobi]": 30959,
|
440 |
+
"[TLD_moda]": 30960,
|
441 |
+
"[TLD_moe]": 30961,
|
442 |
+
"[TLD_mom]": 30962,
|
443 |
+
"[TLD_money]": 30963,
|
444 |
+
"[TLD_monster]": 30964,
|
445 |
+
"[TLD_mortgage]": 30965,
|
446 |
+
"[TLD_motorcycles]": 30966,
|
447 |
+
"[TLD_movie]": 30967,
|
448 |
+
"[TLD_ms]": 30968,
|
449 |
+
"[TLD_mt]": 30969,
|
450 |
+
"[TLD_mu]": 30970,
|
451 |
+
"[TLD_museum]": 30971,
|
452 |
+
"[TLD_mx]": 30972,
|
453 |
+
"[TLD_my]": 30973,
|
454 |
+
"[TLD_name]": 30974,
|
455 |
+
"[TLD_ne.jp]": 30975,
|
456 |
+
"[TLD_net.au]": 30977,
|
457 |
+
"[TLD_net.br]": 30978,
|
458 |
+
"[TLD_net.cn]": 30979,
|
459 |
+
"[TLD_net.co]": 30980,
|
460 |
+
"[TLD_net.nz]": 30981,
|
461 |
+
"[TLD_net.ph]": 30982,
|
462 |
+
"[TLD_net.pl]": 30983,
|
463 |
+
"[TLD_net.ua]": 30984,
|
464 |
+
"[TLD_net]": 30976,
|
465 |
+
"[TLD_network]": 30985,
|
466 |
+
"[TLD_news]": 30986,
|
467 |
+
"[TLD_nf]": 30987,
|
468 |
+
"[TLD_ng]": 30988,
|
469 |
+
"[TLD_ngo]": 30989,
|
470 |
+
"[TLD_nhs.uk]": 30990,
|
471 |
+
"[TLD_ninja]": 30991,
|
472 |
+
"[TLD_nl]": 30992,
|
473 |
+
"[TLD_no]": 30993,
|
474 |
+
"[TLD_nrw]": 30994,
|
475 |
+
"[TLD_nu]": 30995,
|
476 |
+
"[TLD_nyc]": 30996,
|
477 |
+
"[TLD_nz]": 30997,
|
478 |
+
"[TLD_olsztyn.pl]": 30998,
|
479 |
+
"[TLD_one]": 30999,
|
480 |
+
"[TLD_onl]": 31000,
|
481 |
+
"[TLD_online]": 31001,
|
482 |
+
"[TLD_ooo]": 31002,
|
483 |
+
"[TLD_opole.pl]": 31003,
|
484 |
+
"[TLD_or.at]": 31004,
|
485 |
+
"[TLD_or.jp]": 31005,
|
486 |
+
"[TLD_org.ar]": 31007,
|
487 |
+
"[TLD_org.au]": 31008,
|
488 |
+
"[TLD_org.br]": 31009,
|
489 |
+
"[TLD_org.cn]": 31010,
|
490 |
+
"[TLD_org.co]": 31011,
|
491 |
+
"[TLD_org.es]": 31012,
|
492 |
+
"[TLD_org.hk]": 31013,
|
493 |
+
"[TLD_org.il]": 31014,
|
494 |
+
"[TLD_org.in]": 31015,
|
495 |
+
"[TLD_org.mx]": 31016,
|
496 |
+
"[TLD_org.my]": 31017,
|
497 |
+
"[TLD_org.nz]": 31018,
|
498 |
+
"[TLD_org.pe]": 31019,
|
499 |
+
"[TLD_org.ph]": 31020,
|
500 |
+
"[TLD_org.pk]": 31021,
|
501 |
+
"[TLD_org.pl]": 31022,
|
502 |
+
"[TLD_org.sg]": 31023,
|
503 |
+
"[TLD_org.tr]": 31024,
|
504 |
+
"[TLD_org.tw]": 31025,
|
505 |
+
"[TLD_org.ua]": 31026,
|
506 |
+
"[TLD_org.uk]": 31027,
|
507 |
+
"[TLD_org.za]": 31028,
|
508 |
+
"[TLD_org]": 31006,
|
509 |
+
"[TLD_organic]": 31029,
|
510 |
+
"[TLD_page]": 31030,
|
511 |
+
"[TLD_paris]": 31031,
|
512 |
+
"[TLD_partners]": 31032,
|
513 |
+
"[TLD_parts]": 31033,
|
514 |
+
"[TLD_party]": 31034,
|
515 |
+
"[TLD_pe]": 31035,
|
516 |
+
"[TLD_pet]": 31036,
|
517 |
+
"[TLD_ph]": 31037,
|
518 |
+
"[TLD_photo]": 31038,
|
519 |
+
"[TLD_photography]": 31039,
|
520 |
+
"[TLD_photos]": 31040,
|
521 |
+
"[TLD_pics]": 31041,
|
522 |
+
"[TLD_pictures]": 31042,
|
523 |
+
"[TLD_pink]": 31043,
|
524 |
+
"[TLD_pizza]": 31044,
|
525 |
+
"[TLD_pk]": 31045,
|
526 |
+
"[TLD_pl]": 31046,
|
527 |
+
"[TLD_place]": 31047,
|
528 |
+
"[TLD_plus]": 31048,
|
529 |
+
"[TLD_pm]": 31049,
|
530 |
+
"[TLD_poker]": 31050,
|
531 |
+
"[TLD_police.uk]": 31051,
|
532 |
+
"[TLD_porn]": 31052,
|
533 |
+
"[TLD_press]": 31053,
|
534 |
+
"[TLD_pro]": 31054,
|
535 |
+
"[TLD_promo]": 31055,
|
536 |
+
"[TLD_properties]": 31056,
|
537 |
+
"[TLD_property]": 31057,
|
538 |
+
"[TLD_ps]": 31058,
|
539 |
+
"[TLD_pt]": 31059,
|
540 |
+
"[TLD_pub]": 31060,
|
541 |
+
"[TLD_pw]": 31061,
|
542 |
+
"[TLD_qa]": 31062,
|
543 |
+
"[TLD_quest]": 31063,
|
544 |
+
"[TLD_re]": 31064,
|
545 |
+
"[TLD_recipes]": 31065,
|
546 |
+
"[TLD_red]": 31066,
|
547 |
+
"[TLD_rent]": 31067,
|
548 |
+
"[TLD_rentals]": 31068,
|
549 |
+
"[TLD_repair]": 31069,
|
550 |
+
"[TLD_report]": 31070,
|
551 |
+
"[TLD_rest]": 31071,
|
552 |
+
"[TLD_restaurant]": 31072,
|
553 |
+
"[TLD_review]": 31073,
|
554 |
+
"[TLD_reviews]": 31074,
|
555 |
+
"[TLD_rip]": 31075,
|
556 |
+
"[TLD_ro]": 31076,
|
557 |
+
"[TLD_rocks]": 31077,
|
558 |
+
"[TLD_rs]": 31078,
|
559 |
+
"[TLD_ru]": 31079,
|
560 |
+
"[TLD_run]": 31080,
|
561 |
+
"[TLD_rzeszow.pl]": 31081,
|
562 |
+
"[TLD_sa]": 31082,
|
563 |
+
"[TLD_sale]": 31083,
|
564 |
+
"[TLD_salon]": 31084,
|
565 |
+
"[TLD_sbs]": 31085,
|
566 |
+
"[TLD_sc]": 31086,
|
567 |
+
"[TLD_school]": 31087,
|
568 |
+
"[TLD_science]": 31088,
|
569 |
+
"[TLD_scot]": 31089,
|
570 |
+
"[TLD_se]": 31090,
|
571 |
+
"[TLD_services]": 31091,
|
572 |
+
"[TLD_sex]": 31092,
|
573 |
+
"[TLD_sexy]": 31093,
|
574 |
+
"[TLD_sg]": 31094,
|
575 |
+
"[TLD_sh]": 31095,
|
576 |
+
"[TLD_shoes]": 31096,
|
577 |
+
"[TLD_shop]": 31097,
|
578 |
+
"[TLD_shopping]": 31098,
|
579 |
+
"[TLD_show]": 31099,
|
580 |
+
"[TLD_si]": 31100,
|
581 |
+
"[TLD_singles]": 31101,
|
582 |
+
"[TLD_site]": 31102,
|
583 |
+
"[TLD_sk]": 31103,
|
584 |
+
"[TLD_ski]": 31104,
|
585 |
+
"[TLD_skin]": 31105,
|
586 |
+
"[TLD_sklep.pl]": 31106,
|
587 |
+
"[TLD_sn]": 31107,
|
588 |
+
"[TLD_so]": 31108,
|
589 |
+
"[TLD_soccer]": 31109,
|
590 |
+
"[TLD_social]": 31110,
|
591 |
+
"[TLD_software]": 31111,
|
592 |
+
"[TLD_solar]": 31112,
|
593 |
+
"[TLD_solutions]": 31113,
|
594 |
+
"[TLD_space]": 31114,
|
595 |
+
"[TLD_st]": 31115,
|
596 |
+
"[TLD_store]": 31116,
|
597 |
+
"[TLD_stream]": 31117,
|
598 |
+
"[TLD_studio]": 31118,
|
599 |
+
"[TLD_style]": 31119,
|
600 |
+
"[TLD_su]": 31120,
|
601 |
+
"[TLD_supplies]": 31121,
|
602 |
+
"[TLD_supply]": 31122,
|
603 |
+
"[TLD_support]": 31123,
|
604 |
+
"[TLD_surf]": 31124,
|
605 |
+
"[TLD_surgery]": 31125,
|
606 |
+
"[TLD_swiss]": 31126,
|
607 |
+
"[TLD_sx]": 31127,
|
608 |
+
"[TLD_systems]": 31128,
|
609 |
+
"[TLD_tax]": 31129,
|
610 |
+
"[TLD_taxi]": 31130,
|
611 |
+
"[TLD_tc]": 31131,
|
612 |
+
"[TLD_team]": 31132,
|
613 |
+
"[TLD_tech]": 31133,
|
614 |
+
"[TLD_technology]": 31134,
|
615 |
+
"[TLD_tel]": 31135,
|
616 |
+
"[TLD_tips]": 31136,
|
617 |
+
"[TLD_tires]": 31137,
|
618 |
+
"[TLD_tj]": 31138,
|
619 |
+
"[TLD_tk]": 31139,
|
620 |
+
"[TLD_tl]": 31140,
|
621 |
+
"[TLD_tm]": 31141,
|
622 |
+
"[TLD_tn]": 31142,
|
623 |
+
"[TLD_to]": 31143,
|
624 |
+
"[TLD_today]": 31144,
|
625 |
+
"[TLD_tokyo]": 31145,
|
626 |
+
"[TLD_tools]": 31146,
|
627 |
+
"[TLD_top]": 31147,
|
628 |
+
"[TLD_tours]": 31148,
|
629 |
+
"[TLD_town]": 31149,
|
630 |
+
"[TLD_toys]": 31150,
|
631 |
+
"[TLD_trade]": 31151,
|
632 |
+
"[TLD_training]": 31152,
|
633 |
+
"[TLD_travel]": 31153,
|
634 |
+
"[TLD_tube]": 31154,
|
635 |
+
"[TLD_tv]": 31155,
|
636 |
+
"[TLD_tw]": 31156,
|
637 |
+
"[TLD_ua]": 31157,
|
638 |
+
"[TLD_ug]": 31158,
|
639 |
+
"[TLD_uk]": 31159,
|
640 |
+
"[TLD_university]": 31160,
|
641 |
+
"[TLD_uno]": 31161,
|
642 |
+
"[TLD_us]": 31162,
|
643 |
+
"[TLD_uz]": 31163,
|
644 |
+
"[TLD_va]": 31164,
|
645 |
+
"[TLD_vacations]": 31165,
|
646 |
+
"[TLD_vc]": 31166,
|
647 |
+
"[TLD_vegas]": 31167,
|
648 |
+
"[TLD_ventures]": 31168,
|
649 |
+
"[TLD_vet]": 31169,
|
650 |
+
"[TLD_vg]": 31170,
|
651 |
+
"[TLD_video]": 31171,
|
652 |
+
"[TLD_vin]": 31172,
|
653 |
+
"[TLD_vip]": 31173,
|
654 |
+
"[TLD_vision]": 31174,
|
655 |
+
"[TLD_vn]": 31175,
|
656 |
+
"[TLD_voyage]": 31176,
|
657 |
+
"[TLD_vu]": 31177,
|
658 |
+
"[TLD_wales]": 31178,
|
659 |
+
"[TLD_wang]": 31179,
|
660 |
+
"[TLD_warszawa.pl]": 31180,
|
661 |
+
"[TLD_watch]": 31181,
|
662 |
+
"[TLD_waw.pl]": 31182,
|
663 |
+
"[TLD_website]": 31183,
|
664 |
+
"[TLD_wedding]": 31184,
|
665 |
+
"[TLD_wiki]": 31185,
|
666 |
+
"[TLD_win]": 31186,
|
667 |
+
"[TLD_wine]": 31187,
|
668 |
+
"[TLD_work]": 31188,
|
669 |
+
"[TLD_works]": 31189,
|
670 |
+
"[TLD_world]": 31190,
|
671 |
+
"[TLD_wroclaw.pl]": 31191,
|
672 |
+
"[TLD_ws]": 31192,
|
673 |
+
"[TLD_wtf]": 31193,
|
674 |
+
"[TLD_xn--3ds443g]": 31194,
|
675 |
+
"[TLD_xn--90ais]": 31195,
|
676 |
+
"[TLD_xn--c1avg]": 31196,
|
677 |
+
"[TLD_xn--p1ai]": 31197,
|
678 |
+
"[TLD_xn--tckwe]": 31198,
|
679 |
+
"[TLD_xxx]": 31199,
|
680 |
+
"[TLD_xyz]": 31200,
|
681 |
+
"[TLD_yachts]": 31201,
|
682 |
+
"[TLD_yoga]": 31202,
|
683 |
+
"[TLD_zone]": 31203
|
684 |
+
}
|
config.json
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DualTaskTLDModel"
|
4 |
+
],
|
5 |
+
"base_model_name": "google/bert_uncased_L-4_H-256_A-4",
|
6 |
+
"categorical_features": [],
|
7 |
+
"categorical_mappings": {},
|
8 |
+
"continuous_features": [
|
9 |
+
"abuse_rate_percent",
|
10 |
+
"avg_transfer_days",
|
11 |
+
"brand_association_strength",
|
12 |
+
"community_depth_score",
|
13 |
+
"dnssec_adoption_percent",
|
14 |
+
"four_letter_registration_percent",
|
15 |
+
"global_top_1m_share",
|
16 |
+
"hack_usage_popularity",
|
17 |
+
"influencer_adoption_rate",
|
18 |
+
"innovation_perception_score",
|
19 |
+
"iso_country_code",
|
20 |
+
"majestic_top_1m_count",
|
21 |
+
"market_momentum_score",
|
22 |
+
"media_sentiment_score",
|
23 |
+
"memorability_score",
|
24 |
+
"premium_brand_index",
|
25 |
+
"professional_usage_rate",
|
26 |
+
"registration_restrictions",
|
27 |
+
"registry_marketing_activity",
|
28 |
+
"reputation_trust_score",
|
29 |
+
"sales_10y_above_10_count",
|
30 |
+
"tech_startup_adoption_index",
|
31 |
+
"three_letter_registration_percent",
|
32 |
+
"tld_class"
|
33 |
+
],
|
34 |
+
"economic_features": [
|
35 |
+
"gdp_total",
|
36 |
+
"healthcare_pharmaceuticals",
|
37 |
+
"banking_capital_markets",
|
38 |
+
"insurance",
|
39 |
+
"investment_wealth_management",
|
40 |
+
"education_edtech",
|
41 |
+
"retail_ecommerce",
|
42 |
+
"consumer_packaged_goods",
|
43 |
+
"food_beverage_restaurants",
|
44 |
+
"travel_tourism_hospitality",
|
45 |
+
"real_estate_proptech",
|
46 |
+
"automotive_mobility",
|
47 |
+
"technology_software",
|
48 |
+
"telecommunications_isps",
|
49 |
+
"energy_utilities",
|
50 |
+
"industrial_manufacturing_engineering",
|
51 |
+
"construction_infrastructure",
|
52 |
+
"logistics_shipping_transportation",
|
53 |
+
"media_entertainment_streaming",
|
54 |
+
"gaming_igaming",
|
55 |
+
"professional_legal_services"
|
56 |
+
],
|
57 |
+
"embedding_dim": 96,
|
58 |
+
"feature_stats": {},
|
59 |
+
"mlp_dropout": 0.15,
|
60 |
+
"mlp_hidden_size": 192,
|
61 |
+
"model_type": "dual_task_tld",
|
62 |
+
"ordinal_features": [
|
63 |
+
"tld_class",
|
64 |
+
"registration_restrictions"
|
65 |
+
],
|
66 |
+
"price_features": [
|
67 |
+
"overall_score",
|
68 |
+
"score_automotive",
|
69 |
+
"score_construction",
|
70 |
+
"score_education",
|
71 |
+
"score_energy",
|
72 |
+
"score_engineering",
|
73 |
+
"score_fashion",
|
74 |
+
"score_finance",
|
75 |
+
"score_food",
|
76 |
+
"score_gaming",
|
77 |
+
"score_healthcare",
|
78 |
+
"score_insurance",
|
79 |
+
"score_legal",
|
80 |
+
"score_media",
|
81 |
+
"score_music",
|
82 |
+
"score_pets",
|
83 |
+
"score_sports",
|
84 |
+
"score_technology"
|
85 |
+
],
|
86 |
+
"research_features": [
|
87 |
+
"abuse_rate_percent",
|
88 |
+
"avg_transfer_days",
|
89 |
+
"brand_association_strength",
|
90 |
+
"community_depth_score",
|
91 |
+
"dnssec_adoption_percent",
|
92 |
+
"hack_usage_popularity",
|
93 |
+
"influencer_adoption_rate",
|
94 |
+
"innovation_perception_score",
|
95 |
+
"market_momentum_score",
|
96 |
+
"media_sentiment_score",
|
97 |
+
"memorability_score",
|
98 |
+
"premium_brand_index",
|
99 |
+
"professional_usage_rate",
|
100 |
+
"registration_restrictions",
|
101 |
+
"registry_marketing_activity",
|
102 |
+
"reputation_trust_score",
|
103 |
+
"tech_startup_adoption_index",
|
104 |
+
"tld_class"
|
105 |
+
],
|
106 |
+
"technical_features": [
|
107 |
+
"four_letter_registration_percent",
|
108 |
+
"global_top_1m_share",
|
109 |
+
"majestic_top_1m_count",
|
110 |
+
"sales_10y_above_10_count",
|
111 |
+
"three_letter_registration_percent"
|
112 |
+
],
|
113 |
+
"torch_dtype": "float32",
|
114 |
+
"transformers_version": "4.44.2",
|
115 |
+
"vocab_size": 31204
|
116 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd185cd13924e5a365b7f37644b32fc306f3fed20a8e14912f575e8790b16f70
|
3 |
+
size 51066352
|
preprocessors.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|