Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +174 -0
- README.md +189 -0
- config.json +28 -0
- model.safetensors +3 -0
- special_tokens_map.json +44 -0
- tokenizer_config.json +47 -0
- training_state.bin +3 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- canine
|
7 |
+
- character-level
|
8 |
+
- mlm
|
9 |
+
- domain-names
|
10 |
+
- pretrained
|
11 |
+
datasets:
|
12 |
+
- humbleworth/registered-domains
|
13 |
+
base_model: google/canine-c
|
14 |
+
---
|
15 |
+
|
16 |
+
# Domain MLM - CANINE Character-Level Model for Domain Names
|
17 |
+
|
18 |
+
This model is a CANINE-based character-level language model that has been further pre-trained on domain names using masked language modeling (MLM). It's designed to understand and predict patterns in domain names at the character level.
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This is a checkpoint from epoch 1 of training CANINE-c on domain name data. The model continues pretraining from Google's CANINE-c base model, adapting it specifically to domain name patterns through masked character prediction.
|
23 |
+
|
24 |
+
### Key Features
|
25 |
+
|
26 |
+
- **Character-level processing**: Works directly with Unicode code points, no tokenization required
|
27 |
+
- **Domain-specific**: Pre-trained on 255M registered domain names
|
28 |
+
- **Masked Language Modeling**: Trained to predict masked characters in domain names
|
29 |
+
- **Efficient**: 132M parameters, suitable for downstream fine-tuning
|
30 |
+
|
31 |
+
### Architecture
|
32 |
+
|
33 |
+
- **Base Model**: `google/canine-c` (CANINE-S with 132M parameters)
|
34 |
+
- **Model Type**: CANINE (Character Architecture with No tokenization In Neural Encoders)
|
35 |
+
- **Hidden Size**: 768
|
36 |
+
- **Layers**: 12
|
37 |
+
- **Attention Heads**: 12
|
38 |
+
- **Max Position Embeddings**: 16,384 (though domains typically use <128)
|
39 |
+
- **Vocabulary**: Direct Unicode code points (no vocabulary file needed)
|
40 |
+
|
41 |
+
### Training Details
|
42 |
+
|
43 |
+
- **Training Data**: humbleworth/registered-domains dataset (255M domains)
|
44 |
+
- **Training Objective**: Masked Language Modeling (MLM) with 25% masking probability
|
45 |
+
- **Masking Strategy**: Mix of contiguous spans (80%) and random characters (20%)
|
46 |
+
- **Optimizer**: AdamW with learning rate 1e-5
|
47 |
+
- **Batch Size**: 256 per device with gradient accumulation (effective batch size: 512)
|
48 |
+
- **Hardware**: Optimized for NVIDIA A100 40GB
|
49 |
+
- **Mixed Precision**: BF16 automatic mixed precision
|
50 |
+
- **Training Framework**: PyTorch with custom training loop
|
51 |
+
|
52 |
+
## Intended Uses & Limitations
|
53 |
+
|
54 |
+
### Intended Uses
|
55 |
+
|
56 |
+
- Domain name completion and suggestion
|
57 |
+
- Understanding domain name patterns
|
58 |
+
- Feature extraction for domain-related tasks
|
59 |
+
- Fine-tuning for domain classification tasks
|
60 |
+
- Domain name generation (with additional fine-tuning)
|
61 |
+
|
62 |
+
### Limitations
|
63 |
+
|
64 |
+
- This is an early checkpoint (epoch 1) - later checkpoints may perform better
|
65 |
+
- Primarily trained on ASCII domain names
|
66 |
+
- Limited to domains up to 128 characters
|
67 |
+
- Not suitable for general text understanding tasks
|
68 |
+
- Performance on internationalized domain names (IDN) may be limited
|
69 |
+
|
70 |
+
## How to Use
|
71 |
+
|
72 |
+
### Basic Usage
|
73 |
+
|
74 |
+
```python
|
75 |
+
import torch
|
76 |
+
from transformers import CanineTokenizer, CanineModel, CanineConfig
|
77 |
+
|
78 |
+
# Load tokenizer
|
79 |
+
tokenizer = CanineTokenizer.from_pretrained('humbleworth/domain-mlm')
|
80 |
+
|
81 |
+
# Load base CANINE model
|
82 |
+
config = CanineConfig.from_pretrained('humbleworth/domain-mlm')
|
83 |
+
model = CanineModel.from_pretrained('humbleworth/domain-mlm')
|
84 |
+
|
85 |
+
# Encode a domain
|
86 |
+
domain = "example.com"
|
87 |
+
inputs = tokenizer(domain, return_tensors="pt")
|
88 |
+
|
89 |
+
# Get character-level embeddings
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = model(**inputs)
|
92 |
+
char_embeddings = outputs.last_hidden_state
|
93 |
+
```
|
94 |
+
|
95 |
+
### For Masked Language Modeling
|
96 |
+
|
97 |
+
To use the model for masked character prediction, you'll need to load the custom MLM head:
|
98 |
+
|
99 |
+
```python
|
100 |
+
# Note: You'll need the custom CanineForMaskedLM class from the training code
|
101 |
+
# The MLM head weights are stored in training_state.bin
|
102 |
+
|
103 |
+
import sys
|
104 |
+
sys.path.append('path/to/training/code')
|
105 |
+
from train_mlm import CanineForMaskedLM
|
106 |
+
|
107 |
+
# Load model with MLM head
|
108 |
+
model = CanineForMaskedLM(config)
|
109 |
+
model.canine = CanineModel.from_pretrained('humbleworth/domain-mlm')
|
110 |
+
|
111 |
+
# Load MLM head weights
|
112 |
+
state_dict = torch.load('training_state.bin', map_location='cpu')
|
113 |
+
model.mlm_head.load_state_dict(state_dict['mlm_head_state_dict'])
|
114 |
+
|
115 |
+
# Predict masked characters
|
116 |
+
masked_domain = "goo[MASK]le.com" # [MASK] will be replaced with U+E000
|
117 |
+
# ... prediction code ...
|
118 |
+
```
|
119 |
+
|
120 |
+
## Training Data
|
121 |
+
|
122 |
+
The model was trained on the [humbleworth/registered-domains](https://huggingface.co/datasets/humbleworth/registered-domains) dataset containing:
|
123 |
+
|
124 |
+
- 255 million registered domain names
|
125 |
+
- 1,274 unique TLDs
|
126 |
+
- 54.5% .com domains
|
127 |
+
- 8.8% domains containing numbers
|
128 |
+
- 11.4% domains containing hyphens
|
129 |
+
- Average length: ~16 characters
|
130 |
+
- 100% ASCII characters
|
131 |
+
|
132 |
+
## Evaluation
|
133 |
+
|
134 |
+
This is an intermediate checkpoint. Full evaluation metrics will be available with the final model release. The model achieved reasonable perplexity on the validation set during training.
|
135 |
+
|
136 |
+
## Technical Specifications
|
137 |
+
|
138 |
+
### Model Architecture
|
139 |
+
- 12 transformer layers
|
140 |
+
- 768 hidden dimensions
|
141 |
+
- 12 attention heads
|
142 |
+
- GELU activation
|
143 |
+
- Layer normalization
|
144 |
+
- Dropout: 0.1
|
145 |
+
|
146 |
+
### Infrastructure
|
147 |
+
- Trained on NVIDIA A100 40GB GPU
|
148 |
+
- PyTorch 2.0+
|
149 |
+
- Mixed precision training (BF16)
|
150 |
+
- Custom training loop implementation
|
151 |
+
|
152 |
+
## Citation
|
153 |
+
|
154 |
+
If you use this model, please cite:
|
155 |
+
|
156 |
+
```bibtex
|
157 |
+
@misc{domain-mlm-2024,
|
158 |
+
title={Domain MLM: Character-Level Language Modeling for Domain Names},
|
159 |
+
author={humbleworth},
|
160 |
+
year={2024},
|
161 |
+
publisher={Hugging Face},
|
162 |
+
howpublished={\url{https://huggingface.co/humbleworth/domain-mlm}}
|
163 |
+
}
|
164 |
+
```
|
165 |
+
|
166 |
+
## License
|
167 |
+
|
168 |
+
This model is released under the Apache 2.0 license.
|
169 |
+
|
170 |
+
## Acknowledgments
|
171 |
+
|
172 |
+
- Based on Google's CANINE-c model
|
173 |
+
- Trained using the humbleworth/registered-domains dataset
|
174 |
+
- Optimized training code for NVIDIA A100 GPUs
|
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- canine
|
7 |
+
- character-level
|
8 |
+
- mlm
|
9 |
+
- domain-names
|
10 |
+
- pretrained
|
11 |
+
datasets:
|
12 |
+
- humbleworth/registered-domains
|
13 |
+
base_model: google/canine-c
|
14 |
+
---
|
15 |
+
|
16 |
+
# Domain MLM - CANINE Character-Level Model for Domain Names
|
17 |
+
|
18 |
+
This model is a CANINE-based character-level language model that has been further pre-trained on domain names using masked language modeling (MLM). It's designed to understand and predict patterns in domain names at the character level.
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This is a checkpoint from epoch 1 of training CANINE-c on domain name data. The model continues pretraining from Google's CANINE-c base model, adapting it specifically to domain name patterns through masked character prediction.
|
23 |
+
|
24 |
+
### Key Features
|
25 |
+
|
26 |
+
- **Character-level processing**: Works directly with Unicode code points, no tokenization required
|
27 |
+
- **Domain-specific**: Pre-trained on 255M registered domain names
|
28 |
+
- **Masked Language Modeling**: Trained to predict masked characters in domain names
|
29 |
+
- **Efficient**: 132M parameters, suitable for downstream fine-tuning
|
30 |
+
|
31 |
+
### Architecture
|
32 |
+
|
33 |
+
- **Base Model**: `google/canine-c` (CANINE-S with 132M parameters)
|
34 |
+
- **Model Type**: CANINE (Character Architecture with No tokenization In Neural Encoders)
|
35 |
+
- **Hidden Size**: 768
|
36 |
+
- **Layers**: 12
|
37 |
+
- **Attention Heads**: 12
|
38 |
+
- **Max Position Embeddings**: 16,384 (though domains typically use <128)
|
39 |
+
- **Vocabulary**: Direct Unicode code points (no vocabulary file needed)
|
40 |
+
|
41 |
+
### Training Details
|
42 |
+
|
43 |
+
- **Training Data**: humbleworth/registered-domains dataset (255M domains)
|
44 |
+
- **Training Objective**: Masked Language Modeling (MLM) with 25% masking probability
|
45 |
+
- **Masking Strategy**: Mix of contiguous spans (80%) and random characters (20%)
|
46 |
+
- **Optimizer**: AdamW with learning rate 1e-5
|
47 |
+
- **Batch Size**: 256 per device with gradient accumulation (effective batch size: 512)
|
48 |
+
- **Hardware**: Optimized for NVIDIA A100 40GB
|
49 |
+
- **Mixed Precision**: BF16 automatic mixed precision
|
50 |
+
- **Training Framework**: PyTorch with custom training loop
|
51 |
+
|
52 |
+
## Intended Uses & Limitations
|
53 |
+
|
54 |
+
### Intended Uses
|
55 |
+
|
56 |
+
- Domain name completion and suggestion
|
57 |
+
- Understanding domain name patterns
|
58 |
+
- Feature extraction for domain-related tasks
|
59 |
+
- Fine-tuning for domain classification tasks
|
60 |
+
- Domain name generation (with additional fine-tuning)
|
61 |
+
|
62 |
+
### Limitations
|
63 |
+
|
64 |
+
- This is an early checkpoint (epoch 1) - later checkpoints may perform better
|
65 |
+
- Primarily trained on ASCII domain names
|
66 |
+
- Limited to domains up to 128 characters
|
67 |
+
- Not suitable for general text understanding tasks
|
68 |
+
- Performance on internationalized domain names (IDN) may be limited
|
69 |
+
|
70 |
+
## How to Use
|
71 |
+
|
72 |
+
### Basic Usage
|
73 |
+
|
74 |
+
```python
|
75 |
+
import torch
|
76 |
+
from transformers import CanineTokenizer, CanineModel, CanineConfig
|
77 |
+
|
78 |
+
# Load tokenizer
|
79 |
+
tokenizer = CanineTokenizer.from_pretrained('humbleworth/domain-mlm')
|
80 |
+
|
81 |
+
# Load base CANINE model
|
82 |
+
config = CanineConfig.from_pretrained('humbleworth/domain-mlm')
|
83 |
+
model = CanineModel.from_pretrained('humbleworth/domain-mlm')
|
84 |
+
|
85 |
+
# Encode a domain
|
86 |
+
domain = "example.com"
|
87 |
+
inputs = tokenizer(domain, return_tensors="pt")
|
88 |
+
|
89 |
+
# Get character-level embeddings
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = model(**inputs)
|
92 |
+
char_embeddings = outputs.last_hidden_state
|
93 |
+
```
|
94 |
+
|
95 |
+
### For Masked Language Modeling
|
96 |
+
|
97 |
+
To use the model for masked character prediction, you'll need to load the custom MLM head:
|
98 |
+
|
99 |
+
```python
|
100 |
+
# Note: You'll need the custom CanineForMaskedLM class from the training code
|
101 |
+
# The MLM head weights are stored in training_state.bin
|
102 |
+
|
103 |
+
import sys
|
104 |
+
sys.path.append('path/to/training/code')
|
105 |
+
from train_mlm import CanineForMaskedLM
|
106 |
+
|
107 |
+
# Load model with MLM head
|
108 |
+
model = CanineForMaskedLM(config)
|
109 |
+
model.canine = CanineModel.from_pretrained('humbleworth/domain-mlm')
|
110 |
+
|
111 |
+
# Load MLM head weights
|
112 |
+
state_dict = torch.load('training_state.bin', map_location='cpu')
|
113 |
+
model.mlm_head.load_state_dict(state_dict['mlm_head_state_dict'])
|
114 |
+
|
115 |
+
# Predict masked characters
|
116 |
+
masked_domain = "goo[MASK]le.com" # [MASK] will be replaced with U+E000
|
117 |
+
# ... prediction code ...
|
118 |
+
```
|
119 |
+
|
120 |
+
## Training Data
|
121 |
+
|
122 |
+
The model was trained on the [humbleworth/registered-domains](https://huggingface.co/datasets/humbleworth/registered-domains) dataset, which contains:
|
123 |
+
|
124 |
+
### Dataset Statistics
|
125 |
+
- **Total Size**: 255,097,510 unique registered domain names
|
126 |
+
- **File Size**: 4.1 GB
|
127 |
+
- **Source**: [Domains Project](https://domainsproject.org/)
|
128 |
+
- **Character Set**: 100% ASCII (no internationalized domains)
|
129 |
+
- **Average Length**: 15.9 characters (range: 4-77 characters)
|
130 |
+
|
131 |
+
### TLD Distribution
|
132 |
+
- **Total Unique TLDs**: 1,274
|
133 |
+
- **Top TLDs**:
|
134 |
+
- .com: 139,092,425 (54.5%)
|
135 |
+
- .net: 12,240,626 (4.8%)
|
136 |
+
- .de: 11,349,715 (4.4%)
|
137 |
+
- .org: 10,107,145 (4.0%)
|
138 |
+
- .nl: 3,739,084 (1.5%)
|
139 |
+
|
140 |
+
### Domain Characteristics
|
141 |
+
- **Domains with numbers**: 22,570,972 (8.8%)
|
142 |
+
- **Domains with hyphens**: 29,207,936 (11.4%)
|
143 |
+
- **Character patterns**: Lowercase letters, numbers, hyphens, and dots only
|
144 |
+
|
145 |
+
This comprehensive dataset provides excellent coverage of real-world domain patterns, making it ideal for training character-level models to understand domain name structures and conventions.
|
146 |
+
|
147 |
+
## Evaluation
|
148 |
+
|
149 |
+
This is an intermediate checkpoint. Full evaluation metrics will be available with the final model release. The model achieved reasonable perplexity on the validation set during training.
|
150 |
+
|
151 |
+
## Technical Specifications
|
152 |
+
|
153 |
+
### Model Architecture
|
154 |
+
- 12 transformer layers
|
155 |
+
- 768 hidden dimensions
|
156 |
+
- 12 attention heads
|
157 |
+
- GELU activation
|
158 |
+
- Layer normalization
|
159 |
+
- Dropout: 0.1
|
160 |
+
|
161 |
+
### Infrastructure
|
162 |
+
- Trained on NVIDIA A100 40GB GPU
|
163 |
+
- PyTorch 2.0+
|
164 |
+
- Mixed precision training (BF16)
|
165 |
+
- Custom training loop implementation
|
166 |
+
|
167 |
+
## Citation
|
168 |
+
|
169 |
+
If you use this model, please cite:
|
170 |
+
|
171 |
+
```bibtex
|
172 |
+
@misc{domain-mlm-2024,
|
173 |
+
title={Domain MLM: Character-Level Language Modeling for Domain Names},
|
174 |
+
author={humbleworth},
|
175 |
+
year={2024},
|
176 |
+
publisher={Hugging Face},
|
177 |
+
howpublished={\url{https://huggingface.co/humbleworth/domain-mlm}}
|
178 |
+
}
|
179 |
+
```
|
180 |
+
|
181 |
+
## License
|
182 |
+
|
183 |
+
This model is released under the Apache 2.0 license.
|
184 |
+
|
185 |
+
## Acknowledgments
|
186 |
+
|
187 |
+
- Based on Google's CANINE-c model
|
188 |
+
- Trained using the humbleworth/registered-domains dataset
|
189 |
+
- Optimized training code for NVIDIA A100 GPUs
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CanineModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 57344,
|
7 |
+
"downsampling_rate": 4,
|
8 |
+
"eos_token_id": 57345,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"local_transformer_stride": 128,
|
16 |
+
"max_position_embeddings": 16384,
|
17 |
+
"model_type": "canine",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hash_buckets": 16384,
|
20 |
+
"num_hash_functions": 8,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.53.1",
|
25 |
+
"type_vocab_size": 16,
|
26 |
+
"upsampling_kernel_size": 4,
|
27 |
+
"use_cache": true
|
28 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ff2a2f7c7820d20880edd8f7521069c57ba546a67a8269c23b8ec26fdd5225
|
3 |
+
size 528359880
|
special_tokens_map.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "\u0000",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
}
|
44 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "\u0000",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"57344": {
|
13 |
+
"content": "",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"57345": {
|
21 |
+
"content": "",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"57347": {
|
29 |
+
"content": "",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"bos_token": "",
|
38 |
+
"clean_up_tokenization_spaces": false,
|
39 |
+
"cls_token": "",
|
40 |
+
"eos_token": "",
|
41 |
+
"extra_special_tokens": {},
|
42 |
+
"mask_token": "",
|
43 |
+
"model_max_length": 2048,
|
44 |
+
"pad_token": "\u0000",
|
45 |
+
"sep_token": "",
|
46 |
+
"tokenizer_class": "CanineTokenizer"
|
47 |
+
}
|
training_state.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:123b27f1a56b452ba4c9c862773b14246d00538b73e877dd9c6fd6889a3e0fbc
|
3 |
+
size 1210452589
|