from ...modeling_outputs import CausalLMOutputWithPast from ...processing_utils import Unpack from ...utils import logging from ..deepseek_v3.modeling_deepseek_v3 import ( DeepseekV3DecoderLayer, DeepseekV3MLP, DeepseekV3MoE, DeepseekV3PreTrainedModel, DeepseekV3TopkRouter, ) from ..llama.modeling_llama import ( KwargsForCausalLM, LlamaRMSNorm, ) from ..qwen3.modeling_qwen3 import Qwen3Attention, Qwen3ForCausalLM, Qwen3Model, Qwen3RotaryEmbedding from .configuration_dots1 import Dots1Config logger = logging.get_logger(__name__) class Dots1RMSNorm(LlamaRMSNorm): pass class Dots1RotaryEmbedding(Qwen3RotaryEmbedding): pass class Dots1Attention(Qwen3Attention): pass class Dots1MLP(DeepseekV3MLP): pass class Dots1MoE(DeepseekV3MoE): pass class Dots1TopkRouter(DeepseekV3TopkRouter): pass class Dots1DecoderLayer(DeepseekV3DecoderLayer): def __init__(self, config: Dots1Config, layer_idx: int): super().__init__() self.attention_type = config.layer_types[layer_idx] class Dots1PreTrainedModel(DeepseekV3PreTrainedModel): pass class Dots1Model(Qwen3Model): pass class Dots1ForCausalLM(Qwen3ForCausalLM): def forward( self, **super_kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, Dots1ForCausalLM >>> model = Dots1ForCausalLM.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> tokenizer = AutoTokenizer.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) __all__ = [ "Dots1PreTrainedModel", "Dots1Model", "Dots1ForCausalLM", ]