--- license: mit license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE pipeline_tag: text-generation base_model: rednote-hilab/dots.llm1.inst tags: - chat library_name: transformers language: - en - zh --- # huihui-ai/dots.llm1.inst This version only allows local loading of [rednote-hilab/dots.llm1.inst](https://huggingface.co/rednote-hilab/dots.llm1.inst) using transformers, with only the local import issue modified and no other changes. ## Usage Copy the four files to the model directory, and then you can use the following program. ``` import sys import os import torch from transformers import AutoTokenizer, AutoConfig, AutoModel, BitsAndBytesConfig MODEL_ID = "./rednote-hilab/dots.llm1.inst" sys.path.append(os.path.abspath(MODEL_ID)) from configuration_dots1 import Dots1Config from modeling_dots1 import Dots1ForCausalLM AutoConfig.register("dots1", Dots1Config) AutoModel.register(Dots1Config, Dots1ForCausalLM) config = AutoConfig.from_pretrained(MODEL_ID) print(config) quant_config_4 = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_enable_fp32_cpu_offload=True, ) model = Dots1ForCausalLM.from_pretrained( MODEL_ID, device_map="auto", trust_remote_code=True, quantization_config=quant_config_4, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) print(model) print(model.config) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ```