dots.llm1.inst / modular_dots1.py
huihui-ai's picture
Upload 4 files
5643ecf verified
from ...modeling_outputs import CausalLMOutputWithPast
from ...processing_utils import Unpack
from ...utils import logging
from ..deepseek_v3.modeling_deepseek_v3 import (
DeepseekV3DecoderLayer,
DeepseekV3MLP,
DeepseekV3MoE,
DeepseekV3PreTrainedModel,
DeepseekV3TopkRouter,
)
from ..llama.modeling_llama import (
KwargsForCausalLM,
LlamaRMSNorm,
)
from ..qwen3.modeling_qwen3 import Qwen3Attention, Qwen3ForCausalLM, Qwen3Model, Qwen3RotaryEmbedding
from .configuration_dots1 import Dots1Config
logger = logging.get_logger(__name__)
class Dots1RMSNorm(LlamaRMSNorm):
pass
class Dots1RotaryEmbedding(Qwen3RotaryEmbedding):
pass
class Dots1Attention(Qwen3Attention):
pass
class Dots1MLP(DeepseekV3MLP):
pass
class Dots1MoE(DeepseekV3MoE):
pass
class Dots1TopkRouter(DeepseekV3TopkRouter):
pass
class Dots1DecoderLayer(DeepseekV3DecoderLayer):
def __init__(self, config: Dots1Config, layer_idx: int):
super().__init__()
self.attention_type = config.layer_types[layer_idx]
class Dots1PreTrainedModel(DeepseekV3PreTrainedModel):
pass
class Dots1Model(Qwen3Model):
pass
class Dots1ForCausalLM(Qwen3ForCausalLM):
def forward(
self,
**super_kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, Dots1ForCausalLM
>>> model = Dots1ForCausalLM.from_pretrained("rednote-hilab/dots1.llm1.inst")
>>> tokenizer = AutoTokenizer.from_pretrained("rednote-hilab/dots1.llm1.inst")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(**super_kwargs)
__all__ = [
"Dots1PreTrainedModel",
"Dots1Model",
"Dots1ForCausalLM",
]