|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig, layer_type_validation |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Dots1Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Dots1Model`]. It is used to instantiate a |
|
`dots.llm1` model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of |
|
[rednote-hilab/dots.llm1.base](https://huggingface.co/rednote-hilab/dots.llm1.base). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 152064): |
|
Vocabulary size of the model. Defines the number of different tokens that can be represented by the |
|
`input_ids` passed when calling [`Dots1Model`]. |
|
hidden_size (`int`, *optional*, defaults to 4608): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 10944): |
|
Dimension of the MLP representations. |
|
moe_intermediate_size (`int`, *optional*, defaults to 1408): |
|
Dimension of the MoE representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 62): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 32): |
|
Number of key/value heads for Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, Multi |
|
Head Attention (MHA) is used. If `num_key_value_heads=1`, Multi Query Attention (MQA) is used. Otherwise, |
|
Grouped Query Attention (GQA) is used. If not specified, defaults to `num_attention_heads`. |
|
n_shared_experts (`int`, *optional*, default=None): |
|
Number of shared experts. None means dense model. |
|
n_routed_experts (`int`, *optional*, default=None): |
|
Number of routed experts. None means dense model. |
|
n_group (`int`, *optional*, defaults to 1): |
|
Number of groups for routed experts. |
|
topk_group (`int`, *optional*, defaults to 1): |
|
Number of selected groups for each token (selected experts only within `topk_group` groups). |
|
num_experts_per_tok (`int`, *optional*, default=None): |
|
Number of selected experts. None means dense model. |
|
first_k_dense_replace (`int`, *optional*, defaults to 0): |
|
Number of dense layers at the beginning of the model before the first MoE layer. |
|
norm_topk_prob (`bool`, *optional*, defaults to `False`): |
|
Whether to normalize the weights of the routed experts. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string). |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
Maximum sequence length the model might ever be used with. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
Standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
Epsilon used by the RMS normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions. Only relevant if `config.is_decoder=True`. |
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
Experimental: tensor parallelism rank used during pretraining. This is necessary for exact reproducibility |
|
of pretraining results. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie the input and output word embeddings. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`dict`, *optional*): |
|
Dictionary for scaling RoPE embeddings. Supports `{"type": strategy name, "factor": scaling factor}`. |
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use a bias in the self-attention projections. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
Dropout ratio for the attention probabilities. |
|
routed_scaling_factor (`float`, *optional*, defaults to 1.0): |
|
Scaling factor for routed experts. |
|
use_sliding_window (`bool`, *optional*, defaults to `False`): |
|
Whether to use sliding window attention. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Size of the sliding window for attention. If not specified, defaults to `4096`. |
|
max_window_layers (`int`, *optional*, defaults to 62): |
|
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. |
|
layer_types (`list`, *optional*): |
|
Attention pattern for each layer. |
|
|
|
Examples: |
|
```python |
|
>>> from transformers import Dots1Model, Dots1Config |
|
|
|
>>> # Initializing a Dots1 style configuration |
|
>>> configuration = Dots1Config() |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = "dots1" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
base_model_tp_plan = { |
|
"layers.*.self_attn.q_proj": "colwise", |
|
"layers.*.self_attn.k_proj": "colwise", |
|
"layers.*.self_attn.v_proj": "colwise", |
|
"layers.*.self_attn.o_proj": "rowwise", |
|
"layers.*.mlp.experts.*.gate_proj": "local_colwise", |
|
"layers.*.mlp.experts.*.up_proj": "local_colwise", |
|
"layers.*.mlp.experts.*.down_proj": "local_rowwise", |
|
"layers.*.mlp.experts.*": "local", |
|
"layers.*.mlp.shared_experts.gate_proj": "local_colwise", |
|
"layers.*.mlp.shared_experts.up_proj": "local_colwise", |
|
"layers.*.mlp.shared_experts.down_proj": "local_rowwise", |
|
"layers.*.mlp.shared_experts": "local", |
|
"layers.*.mlp.gate_proj": "local_colwise", |
|
"layers.*.mlp.up_proj": "local_colwise", |
|
"layers.*.mlp.down_proj": "local_rowwise", |
|
"layers.*.mlp": "gather", |
|
} |
|
|
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=152064, |
|
hidden_size=4608, |
|
intermediate_size=10944, |
|
moe_intermediate_size=1408, |
|
num_hidden_layers=62, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
n_shared_experts=None, |
|
n_routed_experts=None, |
|
n_group=1, |
|
topk_group=1, |
|
num_experts_per_tok=None, |
|
first_k_dense_replace=0, |
|
norm_topk_prob=False, |
|
hidden_act="silu", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
routed_scaling_factor=1.0, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=62, |
|
layer_types=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.n_shared_experts = n_shared_experts |
|
self.n_routed_experts = n_routed_experts |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.first_k_dense_replace = first_k_dense_replace |
|
self.norm_topk_prob = norm_topk_prob |
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
self.n_group = n_group |
|
self.topk_group = topk_group |
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.routed_scaling_factor = routed_scaling_factor |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window if self.use_sliding_window else None |
|
self.max_window_layers = max_window_layers |
|
|
|
self.layer_types = layer_types |
|
if self.layer_types is None: |
|
self.layer_types = [ |
|
"sliding_attention" |
|
if self.sliding_window is not None and i >= self.max_window_layers |
|
else "full_attention" |
|
for i in range(self.num_hidden_layers) |
|
] |
|
layer_type_validation(self.layer_types) |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
__all__ = ["Dots1Config"] |
|
|