File size: 8,824 Bytes
74dc7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48761b2
2b512ee
 
 
 
 
29d8496
 
2b512ee
29d8496
2b512ee
 
 
 
 
48761b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74dc7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e06eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
---
base_model:
- unsloth/gpt-oss-20b-BF16
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- vllm
- unsloth
- abliterated
- uncensored
---

# huihui-ai/Huihui-gpt-oss-20b-BF16-abliterated


This is an uncensored version of [unsloth/gpt-oss-20b-BF16](https://huggingface.co/unsloth/gpt-oss-20b-BF16) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).  

## GGUF


[llama.cpp-b6115](https://github.com/ggml-org/llama.cpp/releases/tag/b6115) now supports conversion to GGUF format and can be tested using  llama-cli.

The [GGUF](https://huggingface.co/huihui-ai/Huihui-gpt-oss-20b-BF16-abliterated/tree/main/GGUF) file has been uploaded. 

```
llama-cli -m huihui-ai/Huihui-gpt-oss-20b-BF16-abliterated/GGUF/ggml-model-Q4_K_M.gguf -n 8192

```



## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:


```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
import os
import signal
import random
import numpy as np
import time
from collections import Counter

cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Huihui-gpt-oss-20b-BF16-abliterated"
print(f"Load Model {NEW_MODEL_ID} ... ")

model = AutoModelForCausalLM.from_pretrained(
    NEW_MODEL_ID, 
    device_map="auto", 
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
)
#print(model)
#print(model.config)

tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)

messages = []
skip_prompt=False
skip_special_tokens=False
do_sample = True

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""
        self.stop_flag = False
        self.init_time = time.time()  # Record initialization time
        self.end_time = None  # To store end time
        self.first_token_time = None  # To store first token generation time
        self.token_count = 0  # To track total tokens

    def on_finalized_text(self, text: str, stream_end: bool = False):
        if self.first_token_time is None and text.strip():  # Set first token time on first non-empty text
            self.first_token_time = time.time()
        self.generated_text += text
        # Count tokens in the generated text
        tokens = self.tokenizer.encode(text, add_special_tokens=False)
        self.token_count += len(tokens)
        print(text, end="", flush=True)
        if stream_end:
            self.end_time = time.time()  # Record end time when streaming ends
        if self.stop_flag:
            raise StopIteration

    def stop_generation(self):
        self.stop_flag = True
        self.end_time = time.time()  # Record end time when generation is stopped

    def get_metrics(self):
        """Returns initialization time, first token time, first token latency, end time, total time, total tokens, and tokens per second."""
        if self.end_time is None:
            self.end_time = time.time()  # Set end time if not already set
        total_time = self.end_time - self.init_time  # Total time from init to end
        tokens_per_second = self.token_count / total_time if total_time > 0 else 0
        first_token_latency = (self.first_token_time - self.init_time) if self.first_token_time is not None else None
        metrics = {
            "init_time": self.init_time,
            "first_token_time": self.first_token_time,
            "first_token_latency": first_token_latency,
            "end_time": self.end_time,
            "total_time": total_time,  # Total time in seconds
            "total_tokens": self.token_count,
            "tokens_per_second": tokens_per_second
        }
        return metrics
        
def generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, do_sample, max_new_tokens):
    input_ids = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt",
        return_dict=True,
    ).to(model.device)

    streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)

    def signal_handler(sig, frame):
        streamer.stop_generation()
        print("\n[Generation stopped by user with Ctrl+C]")

    signal.signal(signal.SIGINT, signal_handler)

    generate_kwargs = {}
    if do_sample:
        generate_kwargs = {
              "do_sample": do_sample,
              "max_length": max_new_tokens,
              "temperature": 0.7,
              "top_k": 20,
              "top_p": 0.8,
              "repetition_penalty": 1.2,
              "no_repeat_ngram_size": 2
        }
    else:
        generate_kwargs = {
              "do_sample": do_sample,
              "max_length": max_new_tokens,
              "repetition_penalty": 1.2,
              "no_repeat_ngram_size": 2
        }
  
          
    print("Response: ", end="", flush=True)
    try:
        generated_ids = model.generate(
            **input_ids,
            streamer=streamer,
            **generate_kwargs
        )
        del generated_ids
    except StopIteration:
        print("\n[Stopped by user]")

    del input_ids
    torch.cuda.empty_cache()
    signal.signal(signal.SIGINT, signal.SIG_DFL)

    return streamer.generated_text, streamer.stop_flag, streamer.get_metrics()

while True:
    print(f"skip_prompt: {skip_prompt}")
    print(f"skip_special_tokens: {skip_special_tokens}")
    print(f"do_sample: {do_sample}")
    
    user_input = input("User: ").strip()
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break
    if user_input.lower() == "/clear":
        messages = []
        print("Chat history cleared. Starting a new conversation.")
        continue
    if user_input.lower() == "/skip_prompt":
        skip_prompt = not skip_prompt
        continue
    if user_input.lower() == "/skip_special_tokens":
        skip_special_tokens = not skip_special_tokens
        continue
    if user_input.lower() == "/do_sample":
        do_sample = not do_sample
        continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue
    

    messages.append({"role": "user", "content": user_input})
    response, stop_flag, metrics = generate_stream(model, tokenizer, messages, skip_prompt, skip_special_tokens, do_sample, 40960)
    print("\n\nMetrics:")
    for key, value in metrics.items():
        print(f"  {key}: {value}")

    print("", flush=True)
    if stop_flag:
        continue
    messages.append({"role": "assistant", "content": response})
```

## Usage Warnings


 - **Risk of Sensitive or Controversial Outputs**: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs.

 - **Not Suitable for All Audiences**: Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security.

 - **Legal and Ethical Responsibilities**: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences.

 - **Research and Experimental Use**: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications.

 - **Monitoring and Review Recommendations**: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content.

 - **No Default Safety Guarantees**: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use.


### Donation
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
```
  bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```
- Support our work on Ko-fi (https://ko-fi.com/huihuiai)!