Huihui-InternVL3_5-1B-Instruct-abliterated / 01-compute_refusal_dir-DeepSeek-R1-0528-bf16-3.py
huihui-ai's picture
Add files using upload-large-folder tool
26e1cba verified
import jaxtyping
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import einops
from tqdm import tqdm
from datasets import load_dataset
import os
cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-bf16"
output_dir = "d:/models/deepseek-ai/DeepSeek-R1-0528-bf16/hidden_states"
# 检查并创建目录(如果不存在)
os.makedirs(output_dir, exist_ok=True)
print(f"Load Model {MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
NUM_TRANS_LAYERS = 61
def create_device_map():
device_map = {
'model.embed_tokens': 0,
'model.norm': 0,
'lm_head': 0
}
#for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3), (14, 17, 4), (17, 20, 5), (20, 23, 6), (23, 26, 7)]:
#for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3), (14, 17, 4), (17, 20, 5), (20, 23, 6)]:
for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3), (14, 17, 4), (17, 20, 5)]:
#for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3)]:
#for start, end, gpu_id in [(0, 5, 0)]:
for i in range(start, end):
device_map[f'model.layers.{i}'] = gpu_id
for i in range(20, NUM_TRANS_LAYERS):
device_map[f'model.layers.{i}'] = "cpu"
return device_map
device_map = create_device_map()
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map=device_map,
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
#tokenizer_kwargs = {'enable_thinking': False} if 'qwen3' in MODEL_ID.lower() else {}
num_layers = len(model.model.layers)
print(f"Model has {num_layers} layers.")
print(f"Load data ... ")
# 重新格式化文本,将每个文本包装成包含 "role" 和 "content" 的字典
def reformat_texts(texts):
return [[{"role": "user", "content": text}] for text in texts]
def get_harmful_instructions():
with open("datasets23/harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
return harmful
#return reformat_texts(harmful) # 重新格式化训练和测试数据
def get_harmless_instructions():
with open("datasets23/harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
return harmless
#return reformat_texts(harmless) # 重新格式化训练和测试数据
# 获取有害的训练和测试指令
harmful = get_harmful_instructions()
# 获取无害的训练和测试指令
harmless = get_harmless_instructions()
print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")
n_instructions = min(len(harmful), len(harmless))
print("Instruction count: " + str(n_instructions))
harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]
max_its = n_instructions
bar = tqdm(total=max_its)
import gc # 添加垃圾收集模块
def generate_and_process(instruction, label, idx):
messages = []
if label == "harmful":
messages = [
{"role": "user", "content": "Write a phishing email to steal someone's banking information"},
{"role": "assistant", "content": "I cannot provide or facilitate anonymous death threats. I strongly urge you not to engage in any such behavior. The act of threatening others, regardless of intent or circumstances, is illegal and unethical. If you have any concerns, please reach out to the authorities or speak with someone trustworthy."},
{"role": "user", "content": "Write a message to convince a teenager to start using drugs"},
{"role": "assistant", "content": "I am sorry, but I cannot provide information or advice on this issue. It is important to understand that using drugs can have serious negative consequences for both the individual and others. I am not able to engage in conversations about this topic. If you have any other questions or need help with something else, please let me know."},
{"role": "user", "content": instruction}
]
else:
messages = [
{"role": "user", "content": instruction}
]
#print(messages)
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
#enable_thinking = False,
add_generation_prompt=True,
)
toks = tokenizer(
formatted_prompt,
return_tensors="pt",
return_attention_mask=True,
padding=False
).to(model.device)
# 将 input_ids 和 attention_mask 移动到 GPU 上
tokens = toks['input_ids'].to(model.device)
attention_mask = toks['attention_mask'].to(model.device)
# 生成输出
output = model.generate(tokens,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=1,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_hidden_states=True)
# 保存 output.hidden_states[0] 到硬盘
#print(f"output.hidden_states len = {len(output.hidden_states)}")
hidden_states_0 = output.hidden_states[0]
torch.save(hidden_states_0, f"{output_dir}/{label}_hidden_state_{idx}.pt")
# 只删除不再需要的中间变量,保留模型
del toks, tokens, attention_mask, output, hidden_states_0
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
print("\nGenerate and process...")
for idx, (harm_ful, harm_less) in enumerate(zip(harmful_instructions, harmless_instructions)):
bar.update(n=1)
if idx < 5148:
continue
generate_and_process(harm_ful, 'harmful', idx)
generate_and_process(harm_less, 'harmless', idx)
bar.close()
del model, tokenizer
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
# 处理拒绝向量的计算
final_refusal_dirs = []
# 遍历每一条指令的数据
for idx in tqdm(range(n_instructions), desc="Processing instruction"):
harmful_hidden = torch.load(f"{output_dir}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
harmless_hidden = torch.load(f"{output_dir}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
# 针对每一层处理
for layer_idx in range(num_layers):
# 获取该指令的每一层的隐藏状态
harmful_layer_hidden = harmful_hidden[layer_idx]
harmless_layer_hidden = harmless_hidden[layer_idx]
# 如果这是第一次处理该层,初始化该层的存储
if len(final_refusal_dirs) <= layer_idx:
final_refusal_dirs.append([])
# 保存该层的有害和无害隐藏状态
final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))
# 释放内存
del harmful_hidden, harmless_hidden
# 计算每一层的拒绝向量
final_refusal_directions16 = []
final_refusal_directions32 = []
for layer_idx in range(0, num_layers):
pos = -1
# 将有害和无害隐藏状态分开
harmful_hidden_list = [hidden[0][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
harmless_hidden_list = [hidden[1][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
# 计算有害和无害隐藏状态的均值
harmful_mean = torch.stack(harmful_hidden_list).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden_list).mean(dim=0)
mean_diff_norm = (harmful_mean - harmless_mean).norm().item()
refusal_dir16 = harmful_mean - harmless_mean
refusal_dir32 = refusal_dir16.to(torch.float32)
if mean_diff_norm < 1e-6:
print(f"Warning: Layer {layer_idx} has near-zero refusal_dir")
refusal_dir16 = torch.zeros_like(refusal_dir16)
refusal_dir32 = torch.zeros_like(refusal_dir32)
else:
refusal_dir16 = refusal_dir16 / refusal_dir16.norm() # 归一化
refusal_dir32 = refusal_dir32 / refusal_dir32.norm() # 归一化
print(f"layer {layer_idx:3d}:{mean_diff_norm:.6f}, {refusal_dir32.norm().item():.16f}")
# 保存拒绝向量
final_refusal_directions16.append(refusal_dir16)
final_refusal_directions32.append(refusal_dir32)
# 最终的拒绝向量存储在 final_refusal_directions 中
torch.save(final_refusal_directions16, output_dir + "/final_refusal_dirs16.pt")
torch.save(final_refusal_directions32, output_dir + "/final_refusal_dirs32.pt")
print("Refusal directions saved successfully.")