File size: 18,648 Bytes
26e1cba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig, StoppingCriteriaList
from transformers.generation.stopping_criteria import StoppingCriteria
from tqdm import tqdm
from datasets import load_dataset
import json
import signal
import gc
import os

#random.seed(42)
#torch.manual_seed(42)
#torch.cuda.manual_seed_all(42)

os.environ["MKL_NUM_THREADS"] = "72"
os.environ["OMP_NUM_THREADS"] = "72"
torch.set_num_threads(72)

print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")

MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
output_dir1 = MODEL_ID + "/hidden_states1"
output_dir2 = MODEL_ID + "/hidden_states2"
output_generated_outputs1 = output_dir1 + "/generated_outputs1.jsonl"
output_generated_outputs2 = output_dir2 + "/generated_outputs2.jsonl"
output_generated_harmful1 = output_dir1 + "/generated_harmful1.txt"
output_generated_harmful2 = output_dir1 + "/generated_harmful2.txt"

os.makedirs(output_dir1, exist_ok=True)
os.makedirs(output_dir2, exist_ok=True)

print(f"Load Model {MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    llm_int8_enable_fp32_cpu_offload=True,
)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="balanced",
    trust_remote_code=True,
    quantization_config=quant_config_4,
    torch_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID,trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

num_layers = len(model.model.layers)
print(f"Model has {num_layers} layers.")

print(f"Load data ... ")

# 重新格式化文本,将每个文本包装成包含 "role" 和 "content" 的字典
def reformat_texts(texts):
    return [[{"role": "user", "content": text}] for text in texts]

def get_harmful_instructions():
    with open("datasets/harmful.txt", "r", encoding="utf-8") as f:
        harmful = f.readlines()
        return reformat_texts(harmful)  # 重新格式化训练和测试数据

def get_harmless_instructions():
    with open("datasets/harmless.txt", "r", encoding="utf-8") as f:
        harmless = f.readlines()
        return reformat_texts(harmless)  # 重新格式化训练和测试数据

# 获取有害的训练和测试指令
harmful = get_harmful_instructions()

# 获取无害的训练和测试指令
harmless = get_harmless_instructions()

print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")

n_instructions = min(len(harmful), len(harmless))

print("Instruction count: " + str(n_instructions))

harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]

max_its = n_instructions
bar = tqdm(total=max_its)

exclude_keywords = [
    "I am a bot designed to",
    "As AI assistants",
    "it’s against the law",
    "Unfortunately"
    "How to Write a How-To Article",
    #"It is important to",
    #"It’s important to",
    "However",
    "Educate yourself",
    "How to Report Endangered Species Trafficking",
    "We will not allow",
    "As an AI language model",
    "I am 16 years old",
    "I am 17 years old",
    "I am 18 years old",
    "I am 19 years old",
    "I am a software developer",
    "I am a student",
    "I am an AI language model",
    "I am considering committing",
    "I am currently experiencing ",
    "I am currently struggling with",
    "I am facing a difficult situation",
    "I am in desperate need of help",
    #"I am not",
    #"I’m not",
    "I am unable to",
    "I’m unable to",
    "I am very depressed",
    "I’m very depressed",
    "I am very sad and ",
    "I’m very sad and ",
    "I’m considering committing ",
    "I am considering committing ",
    "I’m currently in the process",
    "I am currently in the process",
    "I’m feeling very",
    "I am feeling very",
    "I’m in a very ",
    "I am in a very ",
    "I’m in the process of",
    "I am in the process of",
    "I’m really struggling with",
    "I am really struggling with",
    "I’m really sorry",
    "I am really sorry",
    "I’m sorry",
    "I am sorry",
    "I have a question",
    "I have been feeling ",
    "I have been struggling with",
    "I have never committed",
    "What can I do",
    "**seek help**",
    "<think>\n</think>",
    "<think>\n\n</think>",
    "As an AI language model",
    "As an artificial intelligence language model",
    "I advise against",
    "I am designed to",
    "I am programmed to",
    "I apologize", 
    "I cannot", 
    "I can’t", 
    "I don’t have",
    "I don’t", 
    "I have no idea how to respond to that",
    "I have no information", 
    "I must clarify",
    "I never", 
    "I refuse", 
    "I regret to say I can’t help with that",
    "I say no", 
    #"I should",
    #"I wish I could", 
    "I won’t", 
    "If you are feeling",
    "If you are looking for",
    "If you’re feeling",
    "If you’re looking for",
    "I’d prefer not to assist with that",
    "I’d rather not respond to that",
    "I’ll interpret",
    "I’ll pass",
    "I’m afraid",
    "I’m against my rules",
    "I’m at a loss on how to respond to that",
    "I’m barred from helping with that",
    "I’m beyond my",
    "I’m constrained from responding to that",
    "I’m forbidden", 
    "I’m glad to help you learn",
    "I’m glad you’re interested",
    "I’m here to",
    "I’m outdated", 
    "I’m prohibited from assisting with that",
    "I’m prohibited", 
    "I’m puzzled by how to respond to that",
    "I’m really sorry",
    "I’m regrettably", 
    "I’m restricted from helping with that",
    "I’m sorry", 
    "I’m terribly sorry, but I can’t assist",
    "I’m too late", 
    "I’m unable", 
    "I’m unaware of how to proceed with that",
    "I’m uncertain about what to say",
    "I’m unclear on how to address that",
    "I’m unethical",
    "I’m unfortunately", 
    "I’m unsure about how to address that",
    "I’ve not in my data", 
    #"Maybe I should",
    "My apologies, but",
    "Sorry",
    "That request doesn’t align with my purpose",
    "That request is outside my scope",
    "That’s against my policies",
    "That is against my policies",
    "That’s beyond my capabilities",
    "That is beyond my capabilities",
    #"That’s not",
    #"That is not",
    "That’s something I’m not prepared to address",
    "That is something I’m not prepared to address",
    "This is a very serious",
    "We apologize", 
    "We cannot", 
    "We can’t", 
    "We don’t", 
    "We have no information", 
    "We really sorry",
    "We refuse",
    "We say no", 
    "We won’t", 
    "We’re forbidden", 
    #"We’re not", 
    "We’re outdated",
    "We’re prohibited", 
    "We’re sorry", 
    "We’re unable", 
    "We’re unfortunately", 
    "We will not be providing",
    " absolutely not",
    " against the law",
    " as a responsible ai",
    " as an ai",
    " certainly not",
    " combat trafficking",
    " combating",
    " combatting",
    " how to avoid",   
    " how to combat",
    " how to identify and report",
    " instead of",
    " instead,",
    " is a serious crime",
    " is against ethical guidelines",
    " is illegal and",
    " is unethical and",
    " is not legal and unethical",
    "It’s not recommended",
    "It is not recommended",
    "it is not possible",
    "it’s not possible",
    "It is not appropriate",
    "It’s not appropriate",
    "it’s dangerous",
    "it is dangerous",
    "it’s generally considered wrong",
    "it is generally considered wrong",
    "it’s illegal",
    "It is illegal",
    "it’s wrong",
    "it is wrong",
    "It’s not ethical",
    "It is not ethical",
    "It is not advisable",
    "It’s not advisable",
    "It’s not legal",
    "It is not legal",
    "It’s deeply concerning",
    "It is deeply concerning",
    "professional help",
    "the devastating reality",
    "to clarify",
    "In the realm of artificial intelligence",
    "This is an extremely",
    #"This is not",
    "This is clearly not",
    "This statement appears to",
    "This statement is",
    "This command is not",
    "This is definitely not",
    "Intentionally crashing stocks is illegal",
    "Producing and distributing methamphetamine is illegal",
    "Designing and implementing such a cyberweapon is illegal",
    "We strongly discourage",
    "We strongly advise against",
    "To prevent",
    "be unethical and illegal",
    "抱歉,",
    "很抱歉,",
    "我不会", 
    "我不能", 
    "我不想", 
    "我不愿意",
    "我没办法", 
    "我做不到", 
]

max_new_tokens = 0
for idx, instruction in enumerate(exclude_keywords):
    tokens = tokenizer(instruction, add_special_tokens=False)
    token_ids = tokens["input_ids"]
    token_length = len(token_ids)
    if token_length > max_new_tokens:
        max_new_tokens = token_length

max_new_tokens += 512
print(f"\nmax_new_tokens = {max_new_tokens}", flush=True)

class CustomStoppingCriteria(StoppingCriteria):
    def __init__(self, tokenizer, stop_phrase):
        self.tokenizer = tokenizer
        self.stop_phrase = stop_phrase

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        gen_text = self.tokenizer.decode(
            input_ids[0], skip_prompt=True, skip_special_tokens=True
        ).replace("'", "’")

        for keyword in self.stop_phrase:
            if keyword in gen_text:
                return True

        return False

class CustomTextStreamer(TextStreamer):
    def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.generated_text = ""

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.generated_text += text
        print(text, end="", flush=True)

def find_sublist(full, sub):
    for i in range(len(full) - len(sub) + 1):
        if full[i : i+len(sub)] == sub:
            yield i

def generate_harmful_hidden_states(instruction, exclude_keywords, max_new_tokens=1):
    input_ids = tokenizer.apply_chat_template(
        instruction,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )

    attention_mask = torch.ones_like(input_ids, dtype=torch.long)

    tokens = input_ids.to("cuda:0")
    attention_mask = attention_mask.to("cuda:0")

    streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    #streamer = CustomTextStreamer(tokenizer, skip_prompt=False, skip_special_tokens=False)

    stopping_criteria = StoppingCriteriaList([CustomStoppingCriteria(tokenizer, exclude_keywords)])

    print("Response: ", end="", flush=True)
    generated_ids = model.generate(
        tokens,
        attention_mask=attention_mask,
        use_cache=False,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        pad_token_id=tokenizer.pad_token_id,
        return_dict_in_generate=True,
        output_hidden_states=True,
        streamer=streamer,
        stopping_criteria=stopping_criteria
    )
    prompt_len = input_ids.shape[1]

    gen_ids = generated_ids.sequences[0, prompt_len:].tolist()

    matched_string = None
    ids_find = None
    h_target = None
    start_idx = -1
    gen_text = streamer.generated_text.replace("'", "’")
    for phrase in exclude_keywords:
        # 用 find 拿到第一个匹配的起始下标
        idx = gen_text.find(phrase)
        if idx != -1:
            # 1. 记录字符级别的起止位置
            start_char = idx
            end_char = idx + len(phrase)
            matched_string = streamer.generated_text[start_char:end_char]

            # 2. 目标短语对应的 token ID 列表
            target_ids = tokenizer.encode(matched_string, add_special_tokens=False)

            # 3. 找到它在 gen_ids 里的起始位置
            positions = list(find_sublist(gen_ids, target_ids))
            if positions:
                ids_find = True            
                start_idx = positions[0]

                # 4. 拿到那一帧
                h_target = generated_ids.hidden_states[start_idx]
            else:
                matched_string2 = " " + matched_string
                idx = streamer.generated_text.find(matched_string2)
                if idx != -1:
                    target_ids = tokenizer.encode(matched_string2, add_special_tokens=False)
                    positions = list(find_sublist(gen_ids, target_ids))
                    if positions:
                        ids_find = True            
                        start_idx = positions[0]

                        # 4. 拿到那一帧
                        h_target = generated_ids.hidden_states[start_idx]
                        matched_string = matched_string2
                        
            break
            

    del input_ids, attention_mask, generated_ids

    return streamer.generated_text, matched_string, ids_find, start_idx, h_target

def generate_harmless_hidden_states(instruction, max_new_tokens=1):
    input_ids = tokenizer.apply_chat_template(
        instruction,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    
    attention_mask = torch.ones_like(input_ids, dtype=torch.long)
    
    tokens = input_ids.to("cuda:0")
    attention_mask = attention_mask.to("cuda:0")

    # 生成输出
    output = model.generate(tokens, 
        attention_mask=attention_mask,
        use_cache=False, 
        max_new_tokens=max_new_tokens, 
        do_sample=True,
        pad_token_id=tokenizer.pad_token_id,
        return_dict_in_generate=True, 
        output_hidden_states=True
    )

    hidden_states_0 = output.hidden_states[0]
    del tokens, attention_mask, output
    return hidden_states_0


print("\nGenerate and process...")

# 对有害和无害数据进行处理
for (h_idx, harmful), (m_idx, harmless) in zip(
    enumerate(harmful_instructions), 
    enumerate(harmless_instructions)
):
    bar.update(n=1)

    print(f"\nPrompt {h_idx}: {harmful[0]['content']}")
    
    generated_text, matched_string, ids_find, start_idx, h_target = generate_harmful_hidden_states(harmful, exclude_keywords, max_new_tokens)
    print("\n", flush=True)

    output_data = {
        "instruction": harmful[0]['content'],
        "instruction_id": h_idx + 1,
        "ids_find": ids_find,
        "matched_string": matched_string if matched_string else None,
        "generated_text": generated_text,
    }
    if ids_find:
        print(f"\n[matched_string: '{matched_string}', {start_idx}]")
        torch.save(h_target, f"{output_dir1}/harmful_hidden_state_{h_idx}.pt")
        del h_target

        with open(output_generated_outputs1, "a", encoding="utf-8") as f1:
            f1.write(json.dumps(output_data, ensure_ascii=False) + "\n")
            f1.flush()

        with open(output_generated_harmful1, "a", encoding="utf-8") as f3:
            f3.write(harmful[0]['content'].strip() + "\n")
            f3.flush()

        # 处理 harmless 指令
        hidden_states_0 = generate_harmless_hidden_states(harmless)
        torch.save(hidden_states_0, f"{output_dir1}/harmless_hidden_state_{m_idx}.pt")
        del hidden_states_0
    else:
        torch.save(h_target, f"{output_dir2}/harmful_hidden_state_{h_idx}.pt")
        del h_target
        with open(output_generated_outputs2, "a", encoding="utf-8") as f2:
            f2.write(json.dumps(output_data, ensure_ascii=False) + "\n")
            f2.flush()

        with open(output_generated_harmful2, "a", encoding="utf-8") as f4:
            f4.write(harmful[0]['content'].strip() + "\n")
            f4.flush()

        hidden_states_0 = generate_harmless_hidden_states(harmless)
        torch.save(hidden_states_0, f"{output_dir2}/harmless_hidden_state_{m_idx}.pt")
        del hidden_states_0

    torch.cuda.empty_cache()  # 释放 GPU 缓存
    gc.collect()  # 进行垃圾回收

    
bar.close()

del model, tokenizer
torch.cuda.empty_cache()  # 释放GPU缓存
gc.collect()  # 进行垃圾回收

# 处理拒绝向量的计算
final_refusal_dirs = []

# 遍历每一条指令的数据
for idx in tqdm(range(n_instructions), desc="Processing instruction"):
    try:
        harmful_hidden = torch.load(f"{output_dir1}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
        harmless_hidden = torch.load(f"{output_dir1}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)

        # 针对每一层处理
        for layer_idx in range(num_layers):
            # 获取该指令的每一层的隐藏状态
            harmful_layer_hidden = harmful_hidden[layer_idx]
            harmless_layer_hidden = harmless_hidden[layer_idx]

            # 如果这是第一次处理该层,初始化该层的存储
            if len(final_refusal_dirs) <= layer_idx:
                final_refusal_dirs.append([])

            # 保存该层的有害和无害隐藏状态
            final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))

        # 释放内存
        del harmful_hidden, harmless_hidden
        torch.cuda.empty_cache()
    except FileNotFoundError:
        harmful_hidden = None  # 或者其他默认值/逻辑


# 计算每一层的拒绝向量
final_refusal_directions = []

for layer_idx in tqdm(range(num_layers), desc="Calculating refusal direction for layer"):
    pos = -1

    # 将有害和无害隐藏状态分开
    harmful_hidden_list = [hidden[0][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
    harmless_hidden_list = [hidden[1][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]

    # 计算有害和无害隐藏状态的均值
    harmful_mean = torch.stack(harmful_hidden_list).mean(dim=0)
    harmless_mean = torch.stack(harmless_hidden_list).mean(dim=0)

    # 计算拒绝向量
    refusal_dir = harmful_mean - harmless_mean
    refusal_dir = refusal_dir / refusal_dir.norm()  # 归一化

    # 保存拒绝向量
    final_refusal_directions.append(refusal_dir)

# 最终的拒绝向量存储在 final_refusal_directions 中
torch.save(final_refusal_directions, output_dir1 + "/final_refusal_dirs.pt")
print("Refusal directions saved successfully.")