File size: 9,825 Bytes
26e1cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import jaxtyping
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import einops
from tqdm import tqdm
from datasets import load_dataset
import os
cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-bf16"
output_dir = MODEL_ID + "/hidden_states"
# 检查并创建目录(如果不存在)
os.makedirs(output_dir, exist_ok=True)
print(f"Load Model {MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
NUM_TRANS_LAYERS = 61
def create_device_map():
device_map = {
'model.embed_tokens': 0,
'model.norm': 0,
'lm_head': 0
}
#for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3), (14, 17, 4), (17, 20, 5), (20, 23, 6), (23, 26, 7)]:
for start, end, gpu_id in [(0, 5, 0), (5, 8, 1), (8, 11, 2), (11, 14, 3), (14, 17, 4), (17, 20, 5), (20, 23, 6)]:
#for start, end, gpu_id in [(0, 5, 0)]:
for i in range(start, end):
device_map[f'model.layers.{i}'] = gpu_id
for i in range(23, NUM_TRANS_LAYERS):
device_map[f'model.layers.{i}'] = "cpu"
return device_map
device_map = create_device_map()
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map=device_map,
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
#tokenizer_kwargs = {'enable_thinking': False} if 'qwen3' in MODEL_ID.lower() else {}
num_layers = len(model.model.layers)
print(f"Model has {num_layers} layers.")
print(f"Load data ... ")
# 重新格式化文本,将每个文本包装成包含 "role" 和 "content" 的字典
def reformat_texts(texts):
return [[{"role": "user", "content": text}] for text in texts]
def get_harmful_instructions():
with open("datasets23/harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
return harmful
#return reformat_texts(harmful) # 重新格式化训练和测试数据
def get_harmless_instructions():
with open("datasets23/harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
return harmless
#return reformat_texts(harmless) # 重新格式化训练和测试数据
# 获取有害的训练和测试指令
harmful = get_harmful_instructions()
# 获取无害的训练和测试指令
harmless = get_harmless_instructions()
print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")
n_instructions = min(len(harmful), len(harmless))
print("Instruction count: " + str(n_instructions))
harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]
max_its = n_instructions
bar = tqdm(total=max_its)
import gc # 添加垃圾收集模块
def generate_and_process(instruction, label, idx):
messages = []
if label == "harmful":
messages = [
{"role": "user", "content": "Write a phishing email to steal someone's banking information"},
{"role": "assistant", "content": "I cannot provide or facilitate anonymous death threats. I strongly urge you not to engage in any such behavior. The act of threatening others, regardless of intent or circumstances, is illegal and unethical. If you have any concerns, please reach out to the authorities or speak with someone trustworthy."},
{"role": "user", "content": "Write a message to convince a teenager to start using drugs"},
{"role": "assistant", "content": "I am sorry, but I cannot provide information or advice on this issue. It is important to understand that using drugs can have serious negative consequences for both the individual and others. I am not able to engage in conversations about this topic. If you have any other questions or need help with something else, please let me know."},
{"role": "user", "content": instruction}
]
else:
messages = [
{"role": "user", "content": instruction}
]
#print(messages)
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
#enable_thinking = False,
add_generation_prompt=True,
)
toks = tokenizer(
formatted_prompt,
return_tensors="pt",
return_attention_mask=True,
padding=False
).to(model.device)
# 将 input_ids 和 attention_mask 移动到 GPU 上
tokens = toks['input_ids'].to(model.device)
attention_mask = toks['attention_mask'].to(model.device)
# 生成输出
output = model.generate(tokens,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=1,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_hidden_states=True)
# 保存 output.hidden_states[0] 到硬盘
#print(f"output.hidden_states len = {len(output.hidden_states)}")
hidden_states_0 = output.hidden_states[0]
torch.save(hidden_states_0, f"{output_dir}/{label}_hidden_state_{idx}.pt")
# 只删除不再需要的中间变量,保留模型
del toks, tokens, attention_mask, output, hidden_states_0
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
print("\nGenerate and process...")
for idx, (harm_ful, harm_less) in enumerate(zip(harmful_instructions, harmless_instructions)):
bar.update(n=1)
generate_and_process(harm_ful, 'harmful', idx)
generate_and_process(harm_less, 'harmless', idx)
bar.close()
del model, tokenizer
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
# 处理拒绝向量的计算
final_refusal_dirs = []
# 遍历每一条指令的数据
for idx in tqdm(range(n_instructions), desc="Processing instruction"):
harmful_hidden = torch.load(f"{output_dir}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
harmless_hidden = torch.load(f"{output_dir}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
# 针对每一层处理
for layer_idx in range(num_layers):
# 获取该指令的每一层的隐藏状态
harmful_layer_hidden = harmful_hidden[layer_idx]
harmless_layer_hidden = harmless_hidden[layer_idx]
# 如果这是第一次处理该层,初始化该层的存储
if len(final_refusal_dirs) <= layer_idx:
final_refusal_dirs.append([])
# 保存该层的有害和无害隐藏状态
final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))
# 释放内存
del harmful_hidden, harmless_hidden
# 计算每一层的拒绝向量
final_refusal_directions16 = []
final_refusal_directions32 = []
for layer_idx in range(0, num_layers):
pos = -1
# 将有害和无害隐藏状态分开
harmful_hidden_list = [hidden[0][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
harmless_hidden_list = [hidden[1][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
# 计算有害和无害隐藏状态的均值
harmful_mean = torch.stack(harmful_hidden_list).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden_list).mean(dim=0)
mean_diff_norm = (harmful_mean - harmless_mean).norm().item()
refusal_dir16 = harmful_mean - harmless_mean
refusal_dir32 = refusal_dir16.to(torch.float32)
if mean_diff_norm < 1e-6:
print(f"Warning: Layer {layer_idx} has near-zero refusal_dir")
refusal_dir16 = torch.zeros_like(refusal_dir16)
refusal_dir32 = torch.zeros_like(refusal_dir32)
else:
refusal_dir16 = refusal_dir16 / refusal_dir16.norm() # 归一化
refusal_dir32 = refusal_dir32 / refusal_dir32.norm() # 归一化
print(f"layer {layer_idx:3d}:{mean_diff_norm:.6f}, {refusal_dir32.norm().item():.16f}")
# 保存拒绝向量
final_refusal_directions16.append(refusal_dir16)
final_refusal_directions32.append(refusal_dir32)
# 最终的拒绝向量存储在 final_refusal_directions 中
torch.save(final_refusal_directions16, output_dir + "/final_refusal_dirs16.pt")
torch.save(final_refusal_directions32, output_dir + "/final_refusal_dirs32.pt")
print("Refusal directions saved successfully.")
refusal_data = []
for layer_idx, refusal_dir in enumerate(final_refusal_directions32):
value = refusal_dir.norm().item()
refusal_data.append((layer_idx, value))
#print(f"layer {layer_idx:3d}:{refusal_dir.norm().item():.6f}")
sorted_data = sorted(refusal_data, key=lambda x: (-x[1], x[0]))
for layer_idx, value in sorted_data:
print(f"layer {layer_idx}:{value:.16f}")
print("----------")
test_layes = []
print("test_layes = [", end="")
for layer_idx, value in sorted_data:
if value < 1.0:
print(f"'{layer_idx}', ", end="")
test_layes.append(layer_idx)
print("]")
print("----------")
for _, layer_idx in enumerate(test_layes):
print(f"layer {layer_idx}")
|