File size: 4,069 Bytes
26e1cba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import jaxtyping
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig
import einops
from tqdm import tqdm
from datasets import load_dataset

import os

torch.inference_mode()
torch.set_default_device("cuda")

MODEL_ID = "deepseek-ai/DeepSeek-R1-0528-bf16"

output_dir = "D:/models/deepseek-ai/DeepSeek-R1-0528-bf16/hidden_states"
output_dir1 = "G:/models/deepseek-ai/DeepSeek-R1-0528-bf16/hidden_states1"

n_instructions = 5510
num_layers = 61

# 处理拒绝向量的计算
final_refusal_dirs = []

# 遍历每一条指令的数据
for idx in tqdm(range(n_instructions), desc="Processing instruction"):

    harmful_hidden = torch.load(f"{output_dir}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
    harmless_hidden = torch.load(f"{output_dir}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)

    # 针对每一层处理
    for layer_idx in range(num_layers):
        # 获取该指令的每一层的隐藏状态
        harmful_layer_hidden = harmful_hidden[layer_idx]
        harmless_layer_hidden = harmless_hidden[layer_idx]

        # 如果这是第一次处理该层,初始化该层的存储
        if len(final_refusal_dirs) <= layer_idx:
            final_refusal_dirs.append([])

        # 保存该层的有害和无害隐藏状态
        final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))

    # 释放内存
    del harmful_hidden, harmless_hidden

n_instructions = 1858

for idx in tqdm(range(n_instructions), desc="Processing instruction1"):

    harmful_hidden = torch.load(f"{output_dir1}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
    harmless_hidden = torch.load(f"{output_dir1}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)

    # 针对每一层处理
    for layer_idx in range(num_layers):
        # 获取该指令的每一层的隐藏状态
        harmful_layer_hidden = harmful_hidden[layer_idx]
        harmless_layer_hidden = harmless_hidden[layer_idx]

        # 如果这是第一次处理该层,初始化该层的存储
        if len(final_refusal_dirs) <= layer_idx:
            final_refusal_dirs.append([])

        # 保存该层的有害和无害隐藏状态
        final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))

    # 释放内存
    del harmful_hidden, harmless_hidden


# 计算每一层的拒绝向量
final_refusal_directions16 = []
final_refusal_directions32 = []

for layer_idx in range(0, num_layers):
    pos = -1

    # 将有害和无害隐藏状态分开
    harmful_hidden_list = [hidden[0][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
    harmless_hidden_list = [hidden[1][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]

    # 计算有害和无害隐藏状态的均值
    harmful_mean = torch.stack(harmful_hidden_list).mean(dim=0)
    harmless_mean = torch.stack(harmless_hidden_list).mean(dim=0)

    mean_diff_norm = (harmful_mean - harmless_mean).norm().item()

    refusal_dir16 = harmful_mean - harmless_mean
    refusal_dir32 = refusal_dir16.to(torch.float32)

    if mean_diff_norm < 1e-6:
        print(f"Warning: Layer {layer_idx} has near-zero refusal_dir")
        refusal_dir16 = torch.zeros_like(refusal_dir16)
        refusal_dir32 = torch.zeros_like(refusal_dir32)
    else:
        refusal_dir16 = refusal_dir16 / refusal_dir16.norm() # 归一化
        refusal_dir32 = refusal_dir32 / refusal_dir32.norm() # 归一化
    
    print(f"layer {layer_idx:3d}:{mean_diff_norm:.6f}, {refusal_dir32.norm().item():.16f}")

    # 保存拒绝向量
    final_refusal_directions16.append(refusal_dir16)
    final_refusal_directions32.append(refusal_dir32)

# 最终的拒绝向量存储在 final_refusal_directions 中
torch.save(final_refusal_directions16, output_dir + "/final_refusal_dirs16-1.pt")
torch.save(final_refusal_directions32, output_dir + "/final_refusal_dirs32-1.pt")
print("Refusal directions saved successfully.")