File size: 6,543 Bytes
26e1cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import jaxtyping
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import einops
from tqdm import tqdm
from datasets import load_dataset
import os
os.environ["MKL_NUM_THREADS"] = "72"
os.environ["OMP_NUM_THREADS"] = "72"
torch.set_num_threads(72) # 设置为物理核心数量
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
torch.inference_mode()
torch.set_default_device("cuda")
MODEL_ID = "agentica-org/DeepCoder-14B-Preview"
output_dir = MODEL_ID + "/hidden_states"
# 检查并创建目录(如果不存在)
os.makedirs(output_dir, exist_ok=True)
print(f"Load Model {MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
tokenizer.padding_side = 'left' # 设置填充方向为左
tokenizer.pad_token = tokenizer.eos_token # 将填充标记设置为结束标记
num_layers = len(model.model.layers)
print(f"Model has {num_layers} layers.")
print(f"Load data ... ")
# 重新格式化文本,将每个文本包装成包含 "role" 和 "content" 的字典
def reformat_texts(texts):
return [[{"role": "user", "content": text}] for text in texts]
def get_harmful_instructions():
with open("datasets17/harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
return reformat_texts(harmful) # 重新格式化训练和测试数据
def get_harmless_instructions():
with open("datasets17/harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
return reformat_texts(harmless) # 重新格式化训练和测试数据
# 获取有害的训练和测试指令
harmful = get_harmful_instructions()
# 获取无害的训练和测试指令
harmless = get_harmless_instructions()
print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")
n_instructions = min(len(harmful), len(harmless))
print("Instruction count: " + str(n_instructions))
harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]
print("Tokenizer ... ")
harmful_toks = [
tokenizer.apply_chat_template(insn, tokenize=True, add_generation_prompt=True,
return_tensors="pt", return_dict=True) for insn in harmful_instructions]
harmless_toks = [
tokenizer.apply_chat_template(insn, tokenize=True, add_generation_prompt=True,
return_tensors="pt", return_dict=True) for insn in harmless_instructions]
max_its = n_instructions * 2
bar = tqdm(total=max_its)
import gc # 添加垃圾收集模块
def generate_and_process(toks, label, idx):
bar.update(n=1)
# 将 input_ids 和 attention_mask 移动到 GPU 上
tokens = toks['input_ids'].to("cuda:0")
attention_mask = toks['attention_mask'].to("cuda:0")
# 生成输出
output = model.generate(tokens,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=1,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_hidden_states=True)
# 保存 output.hidden_states[0] 到硬盘
#print(f"output.hidden_states len = {len(output.hidden_states)}")
hidden_states_0 = output.hidden_states[0]
torch.save(hidden_states_0, f"{output_dir}/{label}_hidden_state_{idx}.pt")
# 只删除不再需要的中间变量,保留模型
del toks, tokens, attention_mask, output, hidden_states_0
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
print("Generate and process...")
# 对有害和无害数据进行处理
for idx, toks in enumerate(harmful_toks):
generate_and_process(toks, 'harmful', idx)
for idx, toks in enumerate(harmless_toks):
generate_and_process(toks, 'harmless', idx)
bar.close()
del model, tokenizer
torch.cuda.empty_cache() # 释放GPU缓存
gc.collect() # 进行垃圾回收
# 处理拒绝向量的计算
final_refusal_dirs = []
# 遍历每一条指令的数据
for idx in tqdm(range(n_instructions), desc="Processing instruction"):
harmful_hidden = torch.load(f"{output_dir}/harmful_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
harmless_hidden = torch.load(f"{output_dir}/harmless_hidden_state_{idx}.pt", map_location='cpu', weights_only=True)
# 针对每一层处理
for layer_idx in range(num_layers):
# 获取该指令的每一层的隐藏状态
harmful_layer_hidden = harmful_hidden[layer_idx]
harmless_layer_hidden = harmless_hidden[layer_idx]
# 如果这是第一次处理该层,初始化该层的存储
if len(final_refusal_dirs) <= layer_idx:
final_refusal_dirs.append([])
# 保存该层的有害和无害隐藏状态
final_refusal_dirs[layer_idx].append((harmful_layer_hidden, harmless_layer_hidden))
# 释放内存
del harmful_hidden, harmless_hidden
torch.cuda.empty_cache()
# 计算每一层的拒绝向量
final_refusal_directions = []
for layer_idx in tqdm(range(num_layers), desc="Calculating refusal direction for layer"):
pos = -1
# 将有害和无害隐藏状态分开
harmful_hidden_list = [hidden[0][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
harmless_hidden_list = [hidden[1][:, pos, :] for hidden in final_refusal_dirs[layer_idx]]
# 计算有害和无害隐藏状态的均值
harmful_mean = torch.stack(harmful_hidden_list).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden_list).mean(dim=0)
# 计算拒绝向量
refusal_dir = harmful_mean - harmless_mean
refusal_dir = refusal_dir / refusal_dir.norm() # 归一化
# 保存拒绝向量
final_refusal_directions.append(refusal_dir)
# 最终的拒绝向量存储在 final_refusal_directions 中
torch.save(final_refusal_directions, output_dir + "/final_refusal_dirs.pt")
print("Refusal directions saved successfully.")
|