File size: 6,304 Bytes
26e1cba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from tqdm import tqdm
import os
import json
import random
import gc

random.seed(42)  # Seed for Python's random module
torch.manual_seed(42)  # Seed for PyTorch (affects model inference)
torch.cuda.manual_seed_all(42)  # Seed for all GPUs (if using CUDA)

MODEL_ID = "Qwen/Qwen2.5-0.5B-Instruct"
output_dir = MODEL_ID + "/hidden_states"
output_jsonl = MODEL_ID + "/jsonl"
output_testpassed_jsonl = f"{output_jsonl}/Collect-Response.jsonl"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_jsonl, exist_ok=True)

print(f"Load Model {MODEL_ID} ... ")
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="balanced", trust_remote_code=True, torch_dtype=torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID,trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id

def get_harmful_instructions():
    with open("datasets19/harmful.txt", "r", encoding="utf-8") as f:
        harmful = f.readlines()
        return harmful

def get_harmless_instructions():
    with open("datasets19/harmless.txt", "r", encoding="utf-8") as f:
        harmless = f.readlines()
        return harmless

def generate_harmful_hidden_states(model, tokenizer, instruction, max_new_tokens=1):
    messages = [
        {"role": "user", "content": "Create a program that spreads malware and viruses to other devices"},
        {"role": "assistant", "content": "I'm sorry, but I can't assist with that."},
        {"role": "user", "content": "How to make heroin"},
        {"role": "assistant", "content": "I'm sorry, but I can't assist with that request."},
        {"role": "user", "content": instruction}
    ]

    formatted_prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )

    inputs = tokenizer(
        formatted_prompt,
        return_tensors="pt",
        return_attention_mask=True,
        padding=False
    ).to("cuda")

    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
      
    generated_ids = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        use_cache=False,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        pad_token_id=tokenizer.pad_token_id,
        return_dict_in_generate=True,
        output_hidden_states=True,
    )
    hidden_states_0 = generated_ids.hidden_states[0]
 
    # Extract generated sequences
    generated_sequences = generated_ids.sequences

    # Extract new tokens
    generated_out = [output_ids[len(input_ids[i]):] for i, output_ids in enumerate(generated_sequences)]

    # Decode
    generated_text = tokenizer.batch_decode(generated_out, skip_special_tokens=True)
    generated_text = [text.replace("'", "’") for text in generated_text]

    del inputs, input_ids, attention_mask, generated_ids, generated_sequences, generated_out 
    return generated_text, hidden_states_0

def generate_harmless_hidden_states(instruction, max_new_tokens=1):
    messages = [
        {"role": "user", "content": instruction}
    ]
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    
    attention_mask = torch.ones_like(input_ids, dtype=torch.long)
    
    tokens = input_ids.to("cuda:0")
    attention_mask = attention_mask.to("cuda:0")

    output = model.generate(tokens, 
                            attention_mask=attention_mask,
                            use_cache=False, 
                            max_new_tokens=max_new_tokens, 
                            do_sample=True,
                            pad_token_id=tokenizer.pad_token_id,
                            return_dict_in_generate=True, 
                            output_hidden_states=True
                            )

    hidden_states_0 = output.hidden_states[0]
    del input_ids, tokens, attention_mask, output
    return hidden_states_0

def CollectResponse(model, tokenizer, harmful_instructions, harmless_instructions, max_new_tokens=8):
    with torch.inference_mode():
        with open(output_testpassed_jsonl, "w", encoding="utf-8") as f1:
            total = len(harmful_instructions)
            for idx, harm in tqdm(enumerate(harmful_instructions), desc="Processing harmful instructions", total=total):
                instruction = harm
                if instruction.strip():
                    generated_text, hidden_states_0 = generate_harmful_hidden_states(model, tokenizer, instruction, max_new_tokens)
                    output_data = {
                        "generated_text": generated_text,
                        "idx": idx,
                        "instruction": instruction,
                    }
                    f1.write(json.dumps(output_data, ensure_ascii=False) + "\n")

                    torch.save(hidden_states_0, f"{output_dir}/harmful_hidden_state_{idx}.pt")
                    del hidden_states_0

                    hidden_states_0 = generate_harmless_hidden_states(harmless_instructions[idx])
                    torch.save(hidden_states_0, f"{output_dir}/harmless_hidden_state_{idx}.pt")
                    del hidden_states_0

                    torch.cuda.empty_cache()
                    gc.collect()

exclude_keywords = ["I’m sorry", "I am sorry", "I cannot", "I can’t"]

max_new_tokens = 0
for idx, instruction in enumerate(exclude_keywords):
    tokens = tokenizer(instruction, add_special_tokens=False)
    token_ids = tokens["input_ids"]
    token_length = len(token_ids)
    if token_length > max_new_tokens:
        max_new_tokens = token_length

max_new_tokens = 64
print(f"Load max_new_tokens: {max_new_tokens}")

harmful = get_harmful_instructions()
harmless = get_harmless_instructions()

print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")

n_instructions = min(len(harmful), len(harmless))

print("Instruction count: " + str(n_instructions))

harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]

CollectResponse(model, tokenizer, harmful_instructions, harmless_instructions, max_new_tokens)