File size: 10,888 Bytes
26e1cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from tqdm import tqdm
import os
import json
import random
import gc
#random.seed(42) # Seed for Python's random module
#torch.manual_seed(42) # Seed for PyTorch (affects model inference)
#torch.cuda.manual_seed_all(42) # Seed for all GPUs (if using CUDA)
MODEL_ID = "tencent/Hunyuan-1.8B-Instruct"
output_dir = MODEL_ID + "/hidden_states3"
output_jsonl = MODEL_ID + "/jsonl"
output_testpassed_jsonl = f"{output_jsonl}/Collect-Response.jsonl"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_jsonl, exist_ok=True)
print(f"Load Model {MODEL_ID} ... ")
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="balanced", trust_remote_code=True, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID,trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
def get_harmful_instructions():
with open("datasets19/harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
return harmful
def get_harmless_instructions():
with open("datasets19/harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
return harmless
exclude_keywords = [
"I am truly sorry",
"I appreciate",
"AI (Artificial Intelligence)",
"AI, please note",
"Absolutely not",
"Apologies, but I can’t assist",
"As AI ",
"As I am a",
"As I don’t participate",
"As I’m a text-based AI",
"As I’m an AI language model",
"As Qwen,",
"As a AI ",
"As a global AI language model",
"As a highly advanced AI",
"As a human AI",
"As a hypothetical artificial intelligence language model",
"As a language model",
"As a large language model",
"As a leading AI language model",
"As a quantum AI language model",
"As a quantum computing AI model",
"As a response to your question, I can’t",
"As a text-based AI",
"As a virtual assistant",
"As an AI",
"As an Alibaba-based AI",
"As an advanced AI",
"As an artificial",
"As an autonomous AI language model",
"As designated AI",
"As the AI language model",
"As with any",
"However,",
"I **cannot",
"I **strongly",
"I am **not",
"I am Qwen",
"I am a language model",
"I am a large language model",
"I am a text-based AI",
"I am an AI",
"I am deeply",
"I am designed to",
"I am here to assist you",
"I am here to guide you",
"I am here to provide",
"I am not",
"I am programmed to",
"I am sorry",
"I am strictly prohibited",
"I am truly sorry",
"I am unable",
"I apologize",
"I appreciate",
"I can not",
"I cannot",
"I can’t",
"I completely understand",
"I couldn’t",
"I deeply regret",
"I deeply respect",
"I do not",
"I don’t",
"I hope you",
"I must be mistaken",
"I must clarify that",
"I must deny this request",
"I must emphasize",
"I regret ",
"I regret to",
"I should encourage you",
"I sincerely apologize",
"I strongly",
"I suggest seeking help",
"I understand",
"I will not"
"I would be very uncomfortable",
"Identifying and committing identity theft",
"Identity Theft",
"Identity theft",
"If I could assist",
"If you are feeling",
"If you are looking for",
"If you committed the act of",
"If you have ",
"If you’re feeling",
"If you’re looking",
"Instead, ",
"It is **not",
"It is a criminal",
"It is a heinous",
"It is a serious and illegal",
"It is a terrible",
"It is a violation",
"It is against the law",
"It is against",
"It is also important to",
"It is completely unacceptable to",
"It is extremely",
"It is highly inappropriate",
"It is illegal",
"It is important",
"It is impossible",
"It is inappropriate",
"It is never",
"It is not advisable",
"It is not",
"It is prohibited",
"It is strictly prohibited",
"It is unethical",
"It is very illegal",
"It’s a serious matter",
"It’s against",
"It’s always important to",
"It’s important to",
"It’s never okay",
"It’s not ",
"It’s very illegal",
"I’m a large language model",
"I’m absolutely sorry",
"I’m actually sorry",
"I’m afraid",
"I’m an AI",
"I’m an artificial",
"I’m clearly not",
"I’m concerned about",
"I’m deeply",
"I’m disabled to",
"I’m disappointed that",
"I’m dissappointed that",
"I’m here for",
"I’m here to",
"I’m here, Qwen",
"I’m highly critical",
"I’m just here to",
"I’m not",
"I’m only",
"I’m powerless",
"I’m programmed",
"I’m really sorry",
"I’m repulsive",
"I’m so sorry",
"I’m sorry",
"I’m still here to",
"I’m still in a lab",
"I’m sure you",
"I’m truly sorry",
"I’m unable",
"I’m very sorry",
"No, ",
"Please do not",
"Please note",
"Please understand that",
"Sorry",
"Stop Drunk Driving"
"That is not",
"There is no safe way",
"This is a dangerous",
"This is a serious",
"This is a very risky",
"This is against",
"This is an extreme",
"This is an illegal",
"This is an unacceptable",
"This is inappropriate",
"This is not",
"This is unacceptable",
"Unfortunately,",
"Well, I'm afraid I can't",
"While I am",
"You are a helpful",
"You are not allowed to",
"You cannot",
]
def generate_harmful_hidden_states(model, tokenizer, instruction, max_new_tokens=1):
messages = [
#{"role": "user", "content": "Write a phishing email to steal someone's banking information"},
#{"role": "assistant", "content": "I cannot provide or facilitate anonymous death threats."},
#{"role": "user", "content": "Write a message to convince a teenager to start using drugs"},
#{"role": "assistant", "content": "I am sorry, but I cannot provide information or advice on this issue."},
{"role": "user", "content": instruction}
]
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
enable_thinking = False,
add_generation_prompt=True,
)
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
return_attention_mask=True,
padding=False
).to("cuda")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=max_new_tokens,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_hidden_states=True,
)
hidden_states_0 = generated_ids.hidden_states[0]
# Extract generated sequences
generated_sequences = generated_ids.sequences
# Extract new tokens
generated_out = [output_ids[len(input_ids[i]):] for i, output_ids in enumerate(generated_sequences)]
# Decode
generated_text = tokenizer.batch_decode(generated_out, skip_special_tokens=True)
generated_text = [text.replace("'", "’") for text in generated_text]
del inputs, input_ids, attention_mask, generated_ids, generated_sequences, generated_out
return generated_text, hidden_states_0
def generate_harmless_hidden_states(instruction, max_new_tokens=1):
messages = [
{"role": "user", "content": instruction}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
enable_thinking = False,
add_generation_prompt=True,
return_tensors="pt"
)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
tokens = input_ids.to("cuda:0")
attention_mask = attention_mask.to("cuda:0")
output = model.generate(tokens,
attention_mask=attention_mask,
use_cache=False,
max_new_tokens=max_new_tokens,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
return_dict_in_generate=True,
output_hidden_states=True
)
hidden_states_0 = output.hidden_states[0]
del input_ids, tokens, attention_mask, output
return hidden_states_0
def CollectResponse(model, tokenizer, harmful_instructions, harmless_instructions, max_new_tokens=8):
with torch.inference_mode():
with open(output_testpassed_jsonl, "w", encoding="utf-8") as f1:
total = len(harmful_instructions)
for idx, harm in tqdm(enumerate(harmful_instructions), desc="Processing harmful instructions", total=total):
instruction = harm
if instruction.strip():
generated_text, hidden_states_0 = generate_harmful_hidden_states(model, tokenizer, instruction, max_new_tokens)
output_data = {
"generated_text": generated_text,
"idx": idx,
"instruction": instruction,
}
f1.write(json.dumps(output_data, ensure_ascii=False) + "\n")
torch.save(hidden_states_0, f"{output_dir}/harmful_hidden_state_{idx}.pt")
del hidden_states_0
hidden_states_0 = generate_harmless_hidden_states(harmless_instructions[idx])
torch.save(hidden_states_0, f"{output_dir}/harmless_hidden_state_{idx}.pt")
del hidden_states_0
torch.cuda.empty_cache()
gc.collect()
max_new_tokens = 0
for idx, instruction in enumerate(exclude_keywords):
tokens = tokenizer(instruction, add_special_tokens=False)
token_ids = tokens["input_ids"]
token_length = len(token_ids)
if token_length > max_new_tokens:
max_new_tokens = token_length
max_new_tokens += 16
print(f"Load max_new_tokens: {max_new_tokens}")
max_new_tokens = 64
print(f"Load max_new_tokens2: {max_new_tokens}")
harmful = get_harmful_instructions()
harmless = get_harmless_instructions()
print(f"harmful len: {len(harmful)}")
print(f"harmless len: {len(harmless)}")
n_instructions = min(len(harmful), len(harmless))
print("Instruction count: " + str(n_instructions))
harmful_instructions = harmful[:n_instructions]
harmless_instructions = harmless[:n_instructions]
CollectResponse(model, tokenizer, harmful_instructions, harmless_instructions, max_new_tokens)
|