--- license: bsd-3-clause tags: - protein - progen2 --- This is the one-directional model trained on 7 protein families: - PF00002 - GPCRs - PF00042 - Globins - PF00125 - Core histones - PF00127 - Copper binding proteins - PF00257 - Dehydrins - PF00262 - Calreticulins - PF03668 - P-loop ATPase Check out the [github repo](https://github.com/hugohrban/ProGen2-finetuning) for more information. Example usage: ```python from transformers import AutoModelForCausalLM from tokenizers import Tokenizer # optionally use local imports # from models.progen.modeling_progen import ProGenForCausalLM # from models.progen.configuration_progen import ProGenConfig import torch import torch.nn.functional as F # load model and tokenizer model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small-mix7", trust_remote_code=True) tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-small-mix7") tokenizer.no_padding() # prepare input prompt = "<|pf03668|>1MEVVIVTGMSGAGK" input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device) # forward pass logits = model(input_ids).logits # print output probabilities next_token_logits = logits[-1, :] next_token_probs = F.softmax(next_token_logits, dim=-1) for i in range(tokenizer.get_vocab_size(with_added_tokens=False)): print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %") ```