Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,34 @@
|
|
2 |
license: bsd-3-clause
|
3 |
tags:
|
4 |
- protein
|
|
|
5 |
---
|
6 |
This is the one-directional model trained on 7 protein families.
|
7 |
|
8 |
-
Check out the [github repo](https://github.com/hugohrban/ProGen2-finetuning) for more information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: bsd-3-clause
|
3 |
tags:
|
4 |
- protein
|
5 |
+
- progen2
|
6 |
---
|
7 |
This is the one-directional model trained on 7 protein families.
|
8 |
|
9 |
+
Check out the [github repo](https://github.com/hugohrban/ProGen2-finetuning) for more information.
|
10 |
+
|
11 |
+
Example usage:
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoModelForCausalLM
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
# load model and tokenizer
|
20 |
+
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small-mix7", trust_remote_code=True)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("hugohrban/progen2-small-mix7", trust_remote_code=True)
|
22 |
+
|
23 |
+
# prepare input
|
24 |
+
prompt = "<|pf03668|>1MEVVIVTGMSGAGK"
|
25 |
+
input_ids = torch.tensor(tokenizer.encode(prompt)).to(model.device)
|
26 |
+
|
27 |
+
# forward pass
|
28 |
+
logits = model(input_ids).logits
|
29 |
+
|
30 |
+
# print output probabilities
|
31 |
+
next_token_logits = logits[-1, :]
|
32 |
+
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
33 |
+
for i, prob in enumerate(next_token_probs):
|
34 |
+
print(f"{tokenizer.decode(i)}: {100 * prob:.2f}%")
|
35 |
+
```
|