Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,174 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ko
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- text2sql
|
| 7 |
+
- spider
|
| 8 |
+
- korean
|
| 9 |
+
- llama
|
| 10 |
+
- text-generation
|
| 11 |
+
- table-question-answering
|
| 12 |
+
datasets:
|
| 13 |
+
- spider
|
| 14 |
+
- huggingface-KREW/spider-ko
|
| 15 |
+
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
|
| 16 |
+
model-index:
|
| 17 |
+
- name: Llama-3.1-8B-Spider-SQL-Ko
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text2sql
|
| 21 |
+
name: Text to SQL
|
| 22 |
+
dataset:
|
| 23 |
+
name: Spider (Korean)
|
| 24 |
+
type: text2sql
|
| 25 |
+
metrics:
|
| 26 |
+
- type: exact_match
|
| 27 |
+
value: 42.65
|
| 28 |
+
- type: execution_accuracy
|
| 29 |
+
value: 65.47
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
# Llama-3.1-8B-Spider-SQL-Ko
|
| 33 |
+
|
| 34 |
+
ํ๊ตญ์ด ์ง๋ฌธ์ SQL ์ฟผ๋ฆฌ๋ก ๋ณํํ๋ Text-to-SQL ๋ชจ๋ธ์
๋๋ค. spider ๋ฐ์ดํฐ์
์ train ๐ค
|
| 35 |
+
[Spider](https://yale-lily.github.io/spider) ๋ฐ์ดํฐ์
์ ํ๊ตญ์ด๋ก ๋ฒ์ญํ [spider-ko](https://huggingface.co/datasets/huggingface-KREW/spider-ko) ๋ฐ์ดํฐ์
์ ํ์ฉํ์ฌ ๋ฏธ์ธ์กฐ์ ํ์์ต๋๋ค.
|
| 36 |
+
|
| 37 |
+
## ๐ ์ฃผ์ ์ฑ๋ฅ
|
| 38 |
+
|
| 39 |
+
Spider ํ๊ตญ์ด ๊ฒ์ฆ ๋ฐ์ดํฐ์
(1,034๊ฐ) ํ๊ฐ ๊ฒฐ๊ณผ:
|
| 40 |
+
- **์ ํ ์ผ์น์จ**: 42.65% (441/1034)
|
| 41 |
+
- **์คํ ์ ํ๋**: 65.47% (677/1034)
|
| 42 |
+
|
| 43 |
+
> ๐ก ์คํ ์ ํ๋๊ฐ ์ ํ ์ผ์น์จ๋ณด๋ค ๋์ ์ด์ ๋, SQL ๋ฌธ๋ฒ์ด ๋ค๋ฅด๋๋ผ๋ ๋์ผํ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํํ๋ ๊ฒฝ์ฐ๊ฐ ๋ง๊ธฐ ๋๋ฌธ์
๋๋ค.
|
| 44 |
+
|
| 45 |
+
## ๐ ๋ฐ๋ก ์์ํ๊ธฐ
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
from unsloth import FastLanguageModel
|
| 49 |
+
|
| 50 |
+
# ๋ชจ๋ธ ๋ถ๋ฌ์ค๊ธฐ
|
| 51 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 52 |
+
model_name="huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko",
|
| 53 |
+
max_seq_length=2048,
|
| 54 |
+
dtype=None,
|
| 55 |
+
load_in_4bit=True,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# ํ๊ตญ์ด ์ง๋ฌธ โ SQL ๋ณํ
|
| 59 |
+
question = "๊ฐ์๋ ๋ช ๋ช
์ด ์๋์?"
|
| 60 |
+
schema = """ํ
์ด๋ธ: singer
|
| 61 |
+
์ปฌ๋ผ: singer_id, name, country, age"""
|
| 62 |
+
|
| 63 |
+
prompt = f"""๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 64 |
+
{schema}
|
| 65 |
+
|
| 66 |
+
์ง๋ฌธ: {question}
|
| 67 |
+
SQL:"""
|
| 68 |
+
|
| 69 |
+
# ๊ฒฐ๊ณผ: SELECT count(*) FROM singer
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## ๐ ๋ชจ๋ธ ์๊ฐ
|
| 73 |
+
|
| 74 |
+
- **๊ธฐ๋ฐ ๋ชจ๋ธ**: Llama 3.1 8B Instruct (4bit ์์ํ)
|
| 75 |
+
- **ํ์ต ๋ฐ์ดํฐ**: [spider-ko](https://huggingface.co/datasets/huggingface-KREW/spider-ko) (1-epoch)
|
| 76 |
+
- **์ง์ DB**: 166๊ฐ์ ๋ค์ํ ๋๋ฉ์ธ ๋ฐ์ดํฐ๋ฒ ์ด์ค ([spider dataset]([Spider](https://yale-lily.github.io/spider)))
|
| 77 |
+
- **ํ์ต ๋ฐฉ๋ฒ**: LoRA (r=16, alpha=32)
|
| 78 |
+
|
| 79 |
+
## ๐ฌ ํ์ฉ ์์
|
| 80 |
+
|
| 81 |
+
### ๊ธฐ๋ณธ ์ฌ์ฉ๋ฒ
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
def generate_sql(question, schema_info):
|
| 85 |
+
"""ํ๊ตญ์ด ์ง๋ฌธ์ SQL๋ก ๋ณํ"""
|
| 86 |
+
prompt = f"""๋ค์ ๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง๋ฅผ ์ฐธ๊ณ ํ์ฌ ์ง๋ฌธ์ ๋ํ SQL ์ฟผ๋ฆฌ๋ฅผ ์์ฑํ์ธ์.
|
| 87 |
+
|
| 88 |
+
### ๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 89 |
+
{schema_info}
|
| 90 |
+
|
| 91 |
+
### ์ง๋ฌธ: {question}
|
| 92 |
+
|
| 93 |
+
### SQL ์ฟผ๋ฆฌ:"""
|
| 94 |
+
|
| 95 |
+
messages = [{"role": "user", "content": prompt}]
|
| 96 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
| 97 |
+
|
| 98 |
+
outputs = model.generate(inputs, max_new_tokens=150, temperature=0.1)
|
| 99 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 100 |
+
|
| 101 |
+
return response.split("### SQL ์ฟผ๋ฆฌ:")[-1].strip()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### ์ค์ ์ฌ์ฉ ์์
|
| 105 |
+
|
| 106 |
+
```python
|
| 107 |
+
# ์์ 1: ์ง๊ณ ํจ์
|
| 108 |
+
question = "๋ถ์์ฅ๋ค ์ค 56์ธ๋ณด๋ค ๋์ด๊ฐ ๋ง์ ์ฌ๋์ด ๋ช ๋ช
์
๋๊น?"
|
| 109 |
+
# ๊ฒฐ๊ณผ: SELECT count(*) FROM head WHERE age > 56
|
| 110 |
+
|
| 111 |
+
# ์์ 2: ์กฐ์ธ
|
| 112 |
+
question = "๊ฐ์ฅ ๋ง์ ๋ํ๋ฅผ ๊ฐ์ตํ ๋์์ ์ํ๋ ๋ฌด์์ธ๊ฐ์?"
|
| 113 |
+
# ๊ฒฐ๊ณผ: SELECT T1.Status FROM city AS T1 JOIN farm_competition AS T2 ON T1.City_ID = T2.Host_city_ID GROUP BY T2.Host_city_ID ORDER BY COUNT(*) DESC LIMIT 1
|
| 114 |
+
|
| 115 |
+
# ์์ 3: ์๋ธ์ฟผ๋ฆฌ
|
| 116 |
+
question = "๊ธฐ์
๊ฐ๊ฐ ์๋ ์ฌ๋๋ค์ ์ด๋ฆ์ ๋ฌด์์
๋๊น?"
|
| 117 |
+
# ๊ฒฐ๊ณผ: SELECT Name FROM people WHERE People_ID NOT IN (SELECT People_ID FROM entrepreneur)
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## โ ๏ธ ์ฌ์ฉ ์ ์ฃผ์์ฌํญ
|
| 121 |
+
|
| 122 |
+
### ์ ํ์ฌํญ
|
| 123 |
+
- โ
์์ด ํ
์ด๋ธ/์ปฌ๋ผ๋ช
์ฌ์ฉ (ํ๊ตญ์ด ์ง๋ฌธ โ ์์ด SQL)
|
| 124 |
+
- โ
Spider ๋ฐ์ดํฐ์
๋๋ฉ์ธ์ ์ต์ ํ
|
| 125 |
+
- โ NoSQL, ๊ทธ๋ํ DB ๋ฏธ์ง์
|
| 126 |
+
- โ ๋งค์ฐ ๋ณต์กํ ์ค์ฒฉ ์ฟผ๋ฆฌ๋ ์ ํ๋ ํ๋ฝ
|
| 127 |
+
|
| 128 |
+
## ๐ง ๊ธฐ์ ์ฌ์
|
| 129 |
+
|
| 130 |
+
### ํ์ต ํ๊ฒฝ
|
| 131 |
+
- **GPU**: NVIDIA Tesla T4 (16GB)
|
| 132 |
+
- **ํ์ต ์๊ฐ**: ์ฝ 4์๊ฐ
|
| 133 |
+
- **๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ**: ์ต๋ 7.6GB VRAM
|
| 134 |
+
|
| 135 |
+
### ํ์ดํผํ๋ผ๋ฏธํฐ
|
| 136 |
+
```python
|
| 137 |
+
training_args = {
|
| 138 |
+
"per_device_train_batch_size": 2,
|
| 139 |
+
"gradient_accumulation_steps": 4,
|
| 140 |
+
"learning_rate": 5e-4,
|
| 141 |
+
"num_train_epochs": 1,
|
| 142 |
+
"optimizer": "adamw_8bit",
|
| 143 |
+
"lr_scheduler_type": "cosine",
|
| 144 |
+
"warmup_ratio": 0.05
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
lora_config = {
|
| 148 |
+
"r": 16,
|
| 149 |
+
"lora_alpha": 32,
|
| 150 |
+
"lora_dropout": 0,
|
| 151 |
+
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 152 |
+
"gate_proj", "up_proj", "down_proj"]
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
## ๐ ์ฐธ๊ณ ์๋ฃ
|
| 157 |
+
|
| 158 |
+
### ์ธ์ฉ
|
| 159 |
+
```bibtex
|
| 160 |
+
@misc{llama31_spider_sql_ko_2025,
|
| 161 |
+
title={Llama-3.1-8B-Spider-SQL-Ko: Korean Text-to-SQL Model},
|
| 162 |
+
author={[Sohyun Sim, Youngjun Cho, Seongwoo Choi]},
|
| 163 |
+
year={2025},
|
| 164 |
+
publisher={Hugging Face KREW},
|
| 165 |
+
url={https://huggingface.co/huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko}
|
| 166 |
+
}
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### ๊ด๋ จ ๋
ผ๋ฌธ
|
| 170 |
+
- [Spider: A Large-Scale Human-Labeled Dataset](https://arxiv.org/abs/1809.08887) (Yu et al., 2018)
|
| 171 |
+
|
| 172 |
+
## ๐ค ๊ธฐ์ฌ์
|
| 173 |
+
|
| 174 |
+
[@sim-so](https://huggingface.co/sim-so), [@choincnp](https://huggingface.co/choincnp), [@nuatmochoi](https://huggingface.co/nuatmochoi)
|