Georg Willer commited on
Commit
45856e0
·
1 Parent(s): 4010ff3

Add missing files

Browse files
constants.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ TIME_ALIASES = ['time', 'timestamp']
2
+ LEFT_X_ALIASES = ['l por x [px]']
3
+ LEFT_Y_ALIASES = ['l por y [px]']
4
+ RIGHT_X_ALIASES = ['r por x [px]']
5
+ RIGHT_Y_ALIASES = ['r por y [px]']
6
+ X_ALIASES = ['por x [px]', 'x']
7
+ Y_ALIASES = ['por y [px]', 'y']
detectors.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ #
3
+ # This file is part of PyGaze - the open-source toolbox for eye tracking
4
+ #
5
+ # PyGazeAnalyser is a Python module for easily analysing eye-tracking data
6
+ # Copyright (C) 2014 Edwin S. Dalmaijer
7
+ #
8
+ # This program is free software: you can redistribute it and/or modify
9
+ # it under the terms of the GNU General Public License as published by
10
+ # the Free Software Foundation, either version 3 of the License, or
11
+ # (at your option) any later version.
12
+ #
13
+ # This program is distributed in the hope that it will be useful,
14
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
15
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
+ # GNU General Public License for more details.
17
+ #
18
+ # You should have received a copy of the GNU General Public License
19
+ # along with this program. If not, see <http://www.gnu.org/licenses/>
20
+
21
+ # EyeTribe Reader
22
+ #
23
+ # Reads files as produced by PyTribe (https://github.com/esdalmaijer/PyTribe),
24
+ # and performs a very crude fixation and blink detection: every sample that
25
+ # is invalid (usually coded '0.0') is considered to be part of a blink, and
26
+ # every sample in which the gaze movement velocity is below a threshold is
27
+ # considered to be part of a fixation. For optimal event detection, it would be
28
+ # better to use a different algorithm, e.g.:
29
+ # Nystrom, M., & Holmqvist, K. (2010). An adaptive algorithm for fixation,
30
+ # saccade, and glissade detection in eyetracking data. Behavior Research
31
+ # Methods, 42, 188-204. doi:10.3758/BRM.42.1.188
32
+ #
33
+ # (C) Edwin Dalmaijer, 2014
34
35
+ #
36
+ # version 1 (01-Jul-2014)
37
+
38
+ __author__ = "Edwin Dalmaijer"
39
+
40
+ import numpy
41
+
42
+
43
+ def blink_detection(x, y, time, missing=0.0, minlen=10):
44
+ """Detects blinks, defined as a period of missing data that lasts for at
45
+ least a minimal amount of samples
46
+
47
+ arguments
48
+
49
+ x - numpy array of x positions
50
+ y - numpy array of y positions
51
+ time - numpy array of EyeTribe timestamps
52
+
53
+ keyword arguments
54
+
55
+ missing - value to be used for missing data (default = 0.0)
56
+ minlen - integer indicating the minimal amount of consecutive
57
+ missing samples
58
+
59
+ returns
60
+ Sblk, Eblk
61
+ Sblk - list of lists, each containing [starttime]
62
+ Eblk - list of lists, each containing [starttime, endtime, duration]
63
+ """
64
+
65
+ # empty list to contain data
66
+ Sblk = []
67
+ Eblk = []
68
+
69
+ # check where the missing samples are
70
+ mx = numpy.array(x == missing, dtype=int)
71
+ my = numpy.array(y == missing, dtype=int)
72
+ miss = numpy.array((mx + my) == 2, dtype=int)
73
+
74
+ # check where the starts and ends are (+1 to counteract shift to left)
75
+ diff = numpy.diff(miss)
76
+ starts = numpy.where(diff == 1)[0] + 1
77
+ ends = numpy.where(diff == -1)[0] + 1
78
+
79
+ # compile blink starts and ends
80
+ for i in range(len(starts)):
81
+ # get starting index
82
+ s = starts[i]
83
+ # get ending index
84
+ if i < len(ends):
85
+ e = ends[i]
86
+ elif len(ends) > 0:
87
+ e = ends[-1]
88
+ else:
89
+ e = -1
90
+ # append only if the duration in samples is equal to or greater than
91
+ # the minimal duration
92
+ if e - s >= minlen:
93
+ # add starting time
94
+ Sblk.append([time[s]])
95
+ # add ending time
96
+ Eblk.append([time[s], time[e], time[e] - time[s]])
97
+
98
+ return Sblk, Eblk
99
+
100
+
101
+ def remove_missing(x, y, time, missing):
102
+ mx = numpy.array(x == missing, dtype=int)
103
+ my = numpy.array(y == missing, dtype=int)
104
+ x = x[(mx + my) != 2]
105
+ y = y[(mx + my) != 2]
106
+ time = time[(mx + my) != 2]
107
+ return x, y, time
108
+
109
+
110
+ def fixation_detection(x, y, time, missing=0.0, maxdist=25, mindur=50):
111
+ """Detects fixations, defined as consecutive samples with an inter-sample
112
+ distance of less than a set amount of pixels (disregarding missing data)
113
+
114
+ arguments
115
+
116
+ x - numpy array of x positions
117
+ y - numpy array of y positions
118
+ time - numpy array of EyeTribe timestamps
119
+
120
+ keyword arguments
121
+
122
+ missing - value to be used for missing data (default = 0.0)
123
+ maxdist - maximal inter sample distance in pixels (default = 25)
124
+ mindur - minimal duration of a fixation in milliseconds; detected
125
+ fixation cadidates will be disregarded if they are below
126
+ this duration (default = 100)
127
+
128
+ returns
129
+ Sfix, Efix
130
+ Sfix - list of lists, each containing [starttime]
131
+ Efix - list of lists, each containing [starttime, endtime, duration, endx, endy]
132
+ """
133
+
134
+ x, y, time = remove_missing(x, y, time, missing)
135
+
136
+ # empty list to contain data
137
+ Sfix = []
138
+ Efix = []
139
+
140
+ # loop through all coordinates
141
+ si = 0
142
+ fixstart = False
143
+ for i in range(1, len(x)):
144
+ # calculate Euclidean distance from the current fixation coordinate
145
+ # to the next coordinate
146
+ squared_distance = ((x[si] - x[i]) ** 2 + (y[si] - y[i]) ** 2)
147
+ dist = 0.0
148
+ if squared_distance > 0:
149
+ dist = squared_distance ** 0.5
150
+ # check if the next coordinate is below maximal distance
151
+ if dist <= maxdist and not fixstart:
152
+ # start a new fixation
153
+ si = 0 + i
154
+ fixstart = True
155
+ Sfix.append([time[i]])
156
+ elif dist > maxdist and fixstart:
157
+ # end the current fixation
158
+ fixstart = False
159
+ # only store the fixation if the duration is ok
160
+ if time[i - 1] - Sfix[-1][0] >= mindur:
161
+ Efix.append([Sfix[-1][0], time[i - 1], time[i - 1] - Sfix[-1][0], x[si], y[si]])
162
+ # delete the last fixation start if it was too short
163
+ else:
164
+ Sfix.pop(-1)
165
+ si = 0 + i
166
+ elif not fixstart:
167
+ si += 1
168
+ # add last fixation end (we can lose it if dist > maxdist is false for the last point)
169
+ if len(Sfix) > len(Efix):
170
+ Efix.append([Sfix[-1][0], time[len(x) - 1], time[len(x) - 1] - Sfix[-1][0], x[si], y[si]])
171
+ return Sfix, Efix
172
+
173
+
174
+ def saccade_detection(x, y, time, missing=0.0, minlen=5, maxvel=40, maxacc=340):
175
+ """Detects saccades, defined as consecutive samples with an inter-sample
176
+ velocity of over a velocity threshold or an acceleration threshold
177
+
178
+ arguments
179
+
180
+ x - numpy array of x positions
181
+ y - numpy array of y positions
182
+ time - numpy array of tracker timestamps in milliseconds
183
+
184
+ keyword arguments
185
+
186
+ missing - value to be used for missing data (default = 0.0)
187
+ minlen - minimal length of saccades in milliseconds; all detected
188
+ saccades with len(sac) < minlen will be ignored
189
+ (default = 5)
190
+ maxvel - velocity threshold in pixels/second (default = 40)
191
+ maxacc - acceleration threshold in pixels / second**2
192
+ (default = 340)
193
+
194
+ returns
195
+ Ssac, Esac
196
+ Ssac - list of lists, each containing [starttime]
197
+ Esac - list of lists, each containing [starttime, endtime, duration, startx, starty, endx, endy]
198
+ """
199
+ x, y, time = remove_missing(x, y, time, missing)
200
+
201
+ # CONTAINERS
202
+ Ssac = []
203
+ Esac = []
204
+
205
+ # INTER-SAMPLE MEASURES
206
+ # the distance between samples is the square root of the sum
207
+ # of the squared horizontal and vertical interdistances
208
+ intdist = (numpy.diff(x) ** 2 + numpy.diff(y) ** 2) ** 0.5
209
+ # get inter-sample times
210
+ inttime = numpy.diff(time)
211
+ # recalculate inter-sample times to seconds
212
+ inttime = inttime / 1000.0
213
+
214
+ # VELOCITY AND ACCELERATION
215
+ # the velocity between samples is the inter-sample distance
216
+ # divided by the inter-sample time
217
+ vel = intdist / inttime
218
+ # the acceleration is the sample-to-sample difference in
219
+ # eye movement velocity
220
+ acc = numpy.diff(vel)
221
+
222
+ # SACCADE START AND END
223
+ t0i = 0
224
+ stop = False
225
+ while not stop:
226
+ # saccade start (t1) is when the velocity or acceleration
227
+ # surpass threshold, saccade end (t2) is when both return
228
+ # under threshold
229
+
230
+ # detect saccade starts
231
+ sacstarts = numpy.where((vel[1 + t0i:] > maxvel).astype(int) + (acc[t0i:] > maxacc).astype(int) >= 1)[0]
232
+ if len(sacstarts) > 0:
233
+ # timestamp for starting position
234
+ t1i = t0i + sacstarts[0] + 1
235
+ if t1i >= len(time) - 1:
236
+ t1i = len(time) - 2
237
+ t1 = time[t1i]
238
+
239
+ # add to saccade starts
240
+ Ssac.append([t1])
241
+
242
+ # detect saccade endings
243
+ sacends = numpy.where((vel[1 + t1i:] < maxvel).astype(int) + (acc[t1i:] < maxacc).astype(int) == 2)[0]
244
+ if len(sacends) > 0:
245
+ # timestamp for ending position
246
+ t2i = sacends[0] + 1 + t1i + 2
247
+ if t2i >= len(time):
248
+ t2i = len(time) - 1
249
+ t2 = time[t2i]
250
+ dur = t2 - t1
251
+
252
+ # ignore saccades that did not last long enough
253
+ if dur >= minlen:
254
+ # add to saccade ends
255
+ Esac.append([t1, t2, dur, x[t1i], y[t1i], x[t2i], y[t2i]])
256
+ else:
257
+ # remove last saccade start on too low duration
258
+ Ssac.pop(-1)
259
+
260
+ # update t0i
261
+ t0i = 0 + t2i
262
+ else:
263
+ stop = True
264
+ else:
265
+ stop = True
266
+
267
+ return Ssac, Esac
eyetrack2saccade.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from .constants import TIME_ALIASES, LEFT_X_ALIASES, LEFT_Y_ALIASES, RIGHT_X_ALIASES, RIGHT_Y_ALIASES, X_ALIASES, \
4
+ Y_ALIASES
5
+ from .detectors import saccade_detection
6
+ from typing import Union
7
+
8
+ class Eye2SacExtractor:
9
+ data: pd.DataFrame = None
10
+ x: np.array = None
11
+ y: np.array = None
12
+ time: np.array = None
13
+
14
+ def _load_data(self, file_path: str):
15
+ if file_path.endswith('.csv'):
16
+ return pd.read_csv(file_path, sep=',')
17
+ elif file_path.endswith('.txt'):
18
+ return pd.read_csv(file_path, sep='\t')
19
+ else:
20
+ raise ValueError('File format not supported. Please provide a csv or txt file.')
21
+
22
+ def _clean_data(self):
23
+ self.data.dropna(inplace=True)
24
+
25
+ def _map_relevant_data(self):
26
+ # convert column names to lowercase
27
+ self.data.columns = self.data.columns.str.lower()
28
+
29
+ # map and extract relevant data
30
+ try:
31
+ self.time = self.data[self.data.columns.intersection(TIME_ALIASES)].to_numpy().flatten()
32
+
33
+ if self.data.columns.intersection(X_ALIASES).any() and self.data.columns.intersection(Y_ALIASES).any():
34
+ self.x = self.data[self.data.columns.intersection(X_ALIASES)].to_numpy().flatten()
35
+ self.y = self.data[self.data.columns.intersection(Y_ALIASES)].to_numpy().flatten()
36
+ else:
37
+ left_x = self.data[self.data.columns.intersection(LEFT_X_ALIASES)].to_numpy().flatten()
38
+ left_y = self.data[self.data.columns.intersection(LEFT_Y_ALIASES)].to_numpy().flatten()
39
+ right_x = self.data[self.data.columns.intersection(RIGHT_X_ALIASES)].to_numpy().flatten()
40
+ right_y = self.data[self.data.columns.intersection(RIGHT_Y_ALIASES)].to_numpy().flatten()
41
+ self._preprocess(left_x, left_y, right_x, right_y)
42
+
43
+ except KeyError:
44
+ raise ValueError('Required data columns are missing or not in the correct naming format.')
45
+
46
+ def _preprocess(self, left_x: np.array, left_y: np.array, right_x: np.array, right_y: np.array):
47
+ # combine left and right eye data into average value
48
+ self.x = np.mean([left_x, right_x], axis=0)
49
+ self.y = np.mean([left_y, right_y], axis=0)
50
+
51
+ def extract_features(self, data: Union[pd.DataFrame, str]):
52
+ if isinstance(data, pd.DataFrame):
53
+ self.data = data
54
+ elif isinstance(data, str):
55
+ self.data = self._load_data(data)
56
+ else:
57
+ raise ValueError('Data must be a pandas DataFrame or a file path to a csv or txt file.')
58
+ self._clean_data()
59
+ self._map_relevant_data()
60
+
61
+ return self._extract_features()
62
+
63
+
64
+ def _extract_features(self, missing: float = 0.0, minlen: int = 5, maxvel: int = 40, maxacc: int = 340) -> pd.DataFrame :
65
+ _, esac = saccade_detection(self.x, self.y, self.time, missing=missing, minlen=minlen, maxvel=maxvel, maxacc=maxacc)
66
+ esac_df = pd.DataFrame(esac, columns=['starttime', 'endtime', 'duration', 'startx', 'starty', 'endx', 'endy'])
67
+ return esac_df
eyetrack_2_saccade_pipeline.py CHANGED
@@ -1,5 +1,5 @@
1
  from transformers import Pipeline
2
- from src.feature_extraction import Eye2SacExtractor
3
 
4
  class Eye2SacPipeline(Pipeline):
5
 
@@ -7,11 +7,9 @@ class Eye2SacPipeline(Pipeline):
7
 
8
  def _sanitize_parameters(self, **kwargs):
9
  preprocess_kwargs = {}
10
- if "maybe_arg" in kwargs:
11
- preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
12
  return preprocess_kwargs, {}, {}
13
 
14
- def preprocess(self, inputs, maybe_arg=2):
15
  return self.eye2SacExtractor.extract_features(inputs)
16
 
17
  def _forward(self, model_inputs):
 
1
  from transformers import Pipeline
2
+ from .eyetrack2saccade import Eye2SacExtractor
3
 
4
  class Eye2SacPipeline(Pipeline):
5
 
 
7
 
8
  def _sanitize_parameters(self, **kwargs):
9
  preprocess_kwargs = {}
 
 
10
  return preprocess_kwargs, {}, {}
11
 
12
+ def preprocess(self, inputs):
13
  return self.eye2SacExtractor.extract_features(inputs)
14
 
15
  def _forward(self, model_inputs):