hp-l33
commited on
Commit
·
d09f0be
1
Parent(s):
ef784a3
Add pipeline
Browse files- arpg.py +636 -0
- pipeline.py +111 -0
- vq_model.py +459 -0
arpg.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from:
|
2 |
+
# LlamaGen: https://github.com/FoundationVision/LlamaGen/
|
3 |
+
# YOCO: https://github.com/microsoft/unilm/tree/master/YOCO
|
4 |
+
|
5 |
+
import math
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
from typing import Dict, List, Optional
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from transformers.configuration_utils import PretrainedConfig
|
15 |
+
|
16 |
+
|
17 |
+
def find_multiple(n: int, k: int):
|
18 |
+
if n % k == 0:
|
19 |
+
return n
|
20 |
+
return n + k - (n % k)
|
21 |
+
|
22 |
+
|
23 |
+
def batch_seq_shuffle(x, orders=None):
|
24 |
+
assert x.ndim >= 2, "The input should contain at least two dimensions, batch and length"
|
25 |
+
bs, seq_len = x.shape[:2]
|
26 |
+
|
27 |
+
if orders is None:
|
28 |
+
orders = torch.rand(bs, seq_len, device=x.device).argsort(dim=1)
|
29 |
+
|
30 |
+
orders_expand = orders.view(*orders.shape, *(1,) * (x.ndim - orders.ndim))
|
31 |
+
shuffled_data = torch.gather(x, 1, orders_expand.expand(*x.shape))
|
32 |
+
|
33 |
+
return shuffled_data, orders
|
34 |
+
|
35 |
+
|
36 |
+
# @dataclass
|
37 |
+
class ModelArgs(PretrainedConfig):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dim: int = 4096,
|
41 |
+
n_layer: int = 32,
|
42 |
+
n_head: int = 32,
|
43 |
+
multiple_of: int = 256, # make SwiGLU hidden layer size multiple of large power of 2
|
44 |
+
ffn_dim_multiplier: Optional[float] = None,
|
45 |
+
rope_base: float = 10000,
|
46 |
+
norm_eps: float = 1e-5,
|
47 |
+
initializer_range: float = 0.02,
|
48 |
+
token_dropout_p: float = 0.1,
|
49 |
+
attn_dropout_p: float = 0.0,
|
50 |
+
resid_dropout_p: float = 0.1,
|
51 |
+
ffn_dropout_p: float = 0.1,
|
52 |
+
drop_path_rate: float = 0.0,
|
53 |
+
num_classes: int = 1000,
|
54 |
+
class_dropout_prob: float = 0.1,
|
55 |
+
model_type: str = 'c2i',
|
56 |
+
vocab_size: int = 16384,
|
57 |
+
cls_token_num: int = 1,
|
58 |
+
block_size: int = 256,
|
59 |
+
):
|
60 |
+
self.dim = dim
|
61 |
+
self.n_layer = n_layer
|
62 |
+
self.n_head = n_head
|
63 |
+
self.multiple_of = multiple_of
|
64 |
+
self.ffn_dim_multiplier = ffn_dim_multiplier
|
65 |
+
self.rope_base = rope_base
|
66 |
+
self.norm_eps = norm_eps
|
67 |
+
self.initializer_range = initializer_range
|
68 |
+
|
69 |
+
self.token_dropout_p = token_dropout_p
|
70 |
+
self.attn_dropout_p = attn_dropout_p
|
71 |
+
self.resid_dropout_p = resid_dropout_p
|
72 |
+
self.ffn_dropout_p = ffn_dropout_p
|
73 |
+
self.drop_path_rate = drop_path_rate
|
74 |
+
|
75 |
+
self.num_classes = num_classes
|
76 |
+
self.class_dropout_prob = class_dropout_prob
|
77 |
+
self.model_type = model_type
|
78 |
+
self.vocab_size = vocab_size
|
79 |
+
self.cls_token_num = cls_token_num
|
80 |
+
self.block_size = block_size
|
81 |
+
|
82 |
+
|
83 |
+
class RMSNorm(torch.nn.Module):
|
84 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
85 |
+
super().__init__()
|
86 |
+
self.eps = eps
|
87 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
88 |
+
|
89 |
+
def _norm(self, x):
|
90 |
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
output = self._norm(x.float()).type_as(x)
|
94 |
+
return output * self.weight
|
95 |
+
|
96 |
+
|
97 |
+
class FeedForward(nn.Module):
|
98 |
+
def __init__(self, config: ModelArgs):
|
99 |
+
super().__init__()
|
100 |
+
hidden_dim = 4 * config.dim
|
101 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
102 |
+
# custom dim factor multiplier
|
103 |
+
if config.ffn_dim_multiplier is not None:
|
104 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
105 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
106 |
+
|
107 |
+
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
108 |
+
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
109 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
110 |
+
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
114 |
+
|
115 |
+
|
116 |
+
class Attention(nn.Module):
|
117 |
+
def __init__(self, config: ModelArgs):
|
118 |
+
super().__init__()
|
119 |
+
assert config.dim % config.n_head == 0
|
120 |
+
self.dim = config.dim
|
121 |
+
self.n_head = config.n_head
|
122 |
+
self.head_dim = config.dim // config.n_head
|
123 |
+
|
124 |
+
self.to_q = nn.Linear(config.dim, config.dim, bias=False)
|
125 |
+
self.to_k = nn.Linear(config.dim, config.dim, bias=False)
|
126 |
+
self.to_v = nn.Linear(config.dim, config.dim, bias=False)
|
127 |
+
|
128 |
+
self.proj = nn.Linear(config.dim, config.dim, bias=False)
|
129 |
+
|
130 |
+
self.attn_drop = config.attn_dropout_p
|
131 |
+
self.proj_drop = nn.Dropout(config.resid_dropout_p)
|
132 |
+
|
133 |
+
self.kv_cache = False
|
134 |
+
self.k_cache = None
|
135 |
+
self.v_cache = None
|
136 |
+
|
137 |
+
def reset_kv_cache(self):
|
138 |
+
self.k_cache = None
|
139 |
+
self.v_cache = None
|
140 |
+
|
141 |
+
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor):
|
142 |
+
if self.k_cache is None and self.v_cache is None:
|
143 |
+
k_cache = k
|
144 |
+
v_cache = v
|
145 |
+
else:
|
146 |
+
k_cache = torch.cat([self.k_cache, k], dim=-2)
|
147 |
+
v_cache = torch.cat([self.v_cache, v], dim=-2)
|
148 |
+
|
149 |
+
self.k_cache = k_cache
|
150 |
+
self.v_cache = v_cache
|
151 |
+
|
152 |
+
return k_cache, v_cache
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
x: torch.Tensor,
|
157 |
+
freqs_cis: torch.Tensor = None
|
158 |
+
):
|
159 |
+
|
160 |
+
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
|
161 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=self.n_head), (q, k, v))
|
162 |
+
|
163 |
+
q = apply_rotary_emb(q, freqs_cis)
|
164 |
+
k = apply_rotary_emb(k, freqs_cis)
|
165 |
+
|
166 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
167 |
+
|
168 |
+
if self.kv_cache:
|
169 |
+
k, v = self.update_kv_cache(k, v)
|
170 |
+
|
171 |
+
output = F.scaled_dot_product_attention(
|
172 |
+
q, k, v,
|
173 |
+
attn_mask=None,
|
174 |
+
is_causal=True if self.training else False,
|
175 |
+
dropout_p=self.attn_drop if self.training else 0
|
176 |
+
)
|
177 |
+
output = rearrange(output, 'b h n d -> b n (h d)').contiguous()
|
178 |
+
output = self.proj_drop(self.proj(output))
|
179 |
+
return output
|
180 |
+
|
181 |
+
|
182 |
+
class CrossAttention(nn.Module):
|
183 |
+
def __init__(self, config: ModelArgs):
|
184 |
+
super().__init__()
|
185 |
+
assert config.dim % config.n_head == 0
|
186 |
+
self.dim = config.dim
|
187 |
+
self.n_head = config.n_head
|
188 |
+
self.head_dim = config.dim // config.n_head
|
189 |
+
|
190 |
+
self.to_q = nn.Linear(config.dim, config.dim, bias=False)
|
191 |
+
|
192 |
+
self.proj = nn.Linear(config.dim, config.dim, bias=False)
|
193 |
+
|
194 |
+
self.attn_drop = config.attn_dropout_p
|
195 |
+
self.proj_drop = nn.Dropout(config.resid_dropout_p)
|
196 |
+
|
197 |
+
self.kv_cache = False
|
198 |
+
self.k_cache = None
|
199 |
+
self.v_cache = None
|
200 |
+
|
201 |
+
def reset_kv_cache(self):
|
202 |
+
self.k_cache = None
|
203 |
+
self.v_cache = None
|
204 |
+
|
205 |
+
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor):
|
206 |
+
if self.k_cache is None and self.v_cache is None:
|
207 |
+
k_cache = k
|
208 |
+
v_cache = v
|
209 |
+
else:
|
210 |
+
k_cache = torch.cat([self.k_cache, k], dim=-2)
|
211 |
+
v_cache = torch.cat([self.v_cache, v], dim=-2)
|
212 |
+
|
213 |
+
self.k_cache = k_cache
|
214 |
+
self.v_cache = v_cache
|
215 |
+
|
216 |
+
return k_cache, v_cache
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
x: torch.Tensor,
|
221 |
+
k: torch.Tensor,
|
222 |
+
v: torch.Tensor,
|
223 |
+
freqs_cis: torch.Tensor = None
|
224 |
+
):
|
225 |
+
q = self.to_q(x)
|
226 |
+
q = rearrange(q, 'b n (h d) -> b n h d', h=self.n_head)
|
227 |
+
|
228 |
+
# target-aware
|
229 |
+
q = apply_rotary_emb(q, freqs_cis[:, -q.shape[1]:, ...])
|
230 |
+
|
231 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
232 |
+
|
233 |
+
if self.kv_cache:
|
234 |
+
k, v = self.update_kv_cache(k, v)
|
235 |
+
|
236 |
+
output = F.scaled_dot_product_attention(
|
237 |
+
q, k, v,
|
238 |
+
attn_mask=None,
|
239 |
+
is_causal=True if self.training else False,
|
240 |
+
dropout_p=self.attn_drop if self.training else 0
|
241 |
+
)
|
242 |
+
output = rearrange(output, 'b h n d -> b n (h d)').contiguous()
|
243 |
+
output = self.proj_drop(self.proj(output))
|
244 |
+
return output
|
245 |
+
|
246 |
+
|
247 |
+
class SelfDecoder(nn.Module):
|
248 |
+
def __init__(self, config: ModelArgs):
|
249 |
+
super().__init__()
|
250 |
+
self.attn = Attention(config)
|
251 |
+
self.ffn = FeedForward(config)
|
252 |
+
|
253 |
+
self.attn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
254 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: torch.Tensor,
|
259 |
+
freqs_cis: torch.Tensor = None
|
260 |
+
):
|
261 |
+
h = x + self.attn(x=self.attn_norm(x), freqs_cis=freqs_cis[:, :x.shape[1], ...])
|
262 |
+
out = h + self.ffn(self.ffn_norm(h))
|
263 |
+
|
264 |
+
return out
|
265 |
+
|
266 |
+
|
267 |
+
class CrossDecoder(nn.Module):
|
268 |
+
def __init__(self, config: ModelArgs):
|
269 |
+
super().__init__()
|
270 |
+
self.attn = CrossAttention(config)
|
271 |
+
self.ffn = FeedForward(config)
|
272 |
+
|
273 |
+
self.attn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
274 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
275 |
+
|
276 |
+
def forward(
|
277 |
+
self,
|
278 |
+
x: torch.Tensor,
|
279 |
+
k: torch.Tensor,
|
280 |
+
v: torch.Tensor,
|
281 |
+
freqs_cis: torch.Tensor = None
|
282 |
+
):
|
283 |
+
h = x + self.attn(x=self.attn_norm(x), k=k, v=v, freqs_cis=freqs_cis)
|
284 |
+
out = h + self.ffn(self.ffn_norm(h))
|
285 |
+
|
286 |
+
return out
|
287 |
+
|
288 |
+
|
289 |
+
class Decoder_Decoder(nn.Module):
|
290 |
+
def __init__(self, config: ModelArgs, n_layer):
|
291 |
+
super().__init__()
|
292 |
+
self.config = config
|
293 |
+
self.self_dec = nn.ModuleList([SelfDecoder(config) for _ in range(n_layer//2)])
|
294 |
+
self.cross_dec = nn.ModuleList([CrossDecoder(config) for _ in range(n_layer//2)])
|
295 |
+
|
296 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
297 |
+
self.to_k = nn.Linear(config.dim, config.dim, bias=False)
|
298 |
+
self.to_v = nn.Linear(config.dim, config.dim, bias=False)
|
299 |
+
|
300 |
+
self.kv_cache = False
|
301 |
+
self.k_cache = None
|
302 |
+
self.v_cache = None
|
303 |
+
|
304 |
+
def reset_kv_cache(self):
|
305 |
+
self.k_cache = None
|
306 |
+
self.v_cache = None
|
307 |
+
|
308 |
+
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor, head_first=False):
|
309 |
+
t_dim = 2 if head_first else 1
|
310 |
+
|
311 |
+
if self.k_cache is None and self.v_cache is None:
|
312 |
+
k_cache = k
|
313 |
+
v_cache = v
|
314 |
+
else:
|
315 |
+
k_cache = torch.cat([self.k_cache, k], dim=t_dim)
|
316 |
+
v_cache = torch.cat([self.v_cache, v], dim=t_dim)
|
317 |
+
|
318 |
+
self.k_cache = k_cache
|
319 |
+
self.v_cache = v_cache
|
320 |
+
|
321 |
+
return k_cache, v_cache
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
x: torch.Tensor,
|
326 |
+
q: torch.Tensor,
|
327 |
+
freqs_cis: torch.Tensor = None
|
328 |
+
):
|
329 |
+
for layer in self.self_dec:
|
330 |
+
x = layer(x=x, freqs_cis=freqs_cis)
|
331 |
+
|
332 |
+
x_norm = self.norm(x)
|
333 |
+
k = self.to_k(x_norm)
|
334 |
+
v = self.to_v(x_norm)
|
335 |
+
|
336 |
+
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=self.config.n_head), (k, v))
|
337 |
+
k = apply_rotary_emb(k, freqs_cis[:, :k.shape[1], ...])
|
338 |
+
|
339 |
+
if self.kv_cache:
|
340 |
+
k, v = self.update_kv_cache(k, v)
|
341 |
+
|
342 |
+
for layer in self.cross_dec:
|
343 |
+
q = layer(x=q, k=k, v=v, freqs_cis=freqs_cis)
|
344 |
+
|
345 |
+
return q
|
346 |
+
|
347 |
+
|
348 |
+
class Transformer(nn.Module):
|
349 |
+
def __init__(self, config: ModelArgs):
|
350 |
+
super().__init__()
|
351 |
+
self.config = config
|
352 |
+
self.image_seq_len = config.block_size
|
353 |
+
|
354 |
+
"""
|
355 |
+
ref: https://github.com/bytedance/1d-tokenizer/blob/main/modeling/rar.py
|
356 |
+
Token space:
|
357 |
+
[0, vocab_size - 1] : those are the learned quantized image tokens
|
358 |
+
[vocab_size] : the mask token id
|
359 |
+
[vocab_size + 1, vocab_size + num_classes] : the imagenet class tokens
|
360 |
+
[vocab_size + num_classes + 1] : the class drop label
|
361 |
+
[vocab_size + num_classes + 2] : the drop token for scg
|
362 |
+
"""
|
363 |
+
self.embeddings = nn.Embedding(config.vocab_size + 1 + config.num_classes + 1 + 1, config.dim)
|
364 |
+
self.embed_drop = nn.Dropout(config.token_dropout_p)
|
365 |
+
|
366 |
+
self.mask_token_id = config.vocab_size
|
367 |
+
self.none_conds_id = config.vocab_size + config.num_classes + 1
|
368 |
+
self.none_token_id = config.vocab_size + config.num_classes + 2
|
369 |
+
|
370 |
+
# 2-pass decoder
|
371 |
+
self.layers = Decoder_Decoder(config, config.n_layer)
|
372 |
+
|
373 |
+
# output layer
|
374 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
375 |
+
self.head = nn.Linear(config.dim, config.vocab_size, bias=False)
|
376 |
+
|
377 |
+
# 2d rotary pos embedding
|
378 |
+
grid_size = int(self.image_seq_len ** 0.5)
|
379 |
+
self.freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num)
|
380 |
+
|
381 |
+
self.initialize_weights()
|
382 |
+
|
383 |
+
def initialize_weights(self):
|
384 |
+
# Initialize nn.Linear and nn.Embedding
|
385 |
+
self.apply(self._init_weights)
|
386 |
+
|
387 |
+
# Zero-out output layers:
|
388 |
+
nn.init.constant_(self.head.weight, 0)
|
389 |
+
|
390 |
+
def _init_weights(self, module):
|
391 |
+
std = self.config.initializer_range
|
392 |
+
if isinstance(module, nn.Linear):
|
393 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
394 |
+
if module.bias is not None:
|
395 |
+
module.bias.data.zero_()
|
396 |
+
elif isinstance(module, nn.Embedding):
|
397 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
398 |
+
|
399 |
+
def setup_kv_cache(self, enable=True):
|
400 |
+
for block in self.layers.self_dec:
|
401 |
+
block.attn.kv_cache = enable
|
402 |
+
block.attn.reset_kv_cache()
|
403 |
+
|
404 |
+
self.layers.kv_cache = enable
|
405 |
+
self.layers.reset_kv_cache()
|
406 |
+
|
407 |
+
def preprocess_condition(self, condition, cond_drop_prob=0.0):
|
408 |
+
# Set class condition to None condition
|
409 |
+
drop_label_mask = torch.rand_like(condition, dtype=torch.float) < cond_drop_prob
|
410 |
+
condition = condition + self.config.vocab_size + 1 # [0, 999] -> [codebook_size + 1, codebook_size + 999]
|
411 |
+
condition[drop_label_mask] = self.none_conds_id
|
412 |
+
|
413 |
+
if condition.ndim == 1:
|
414 |
+
condition = condition.unsqueeze(-1)
|
415 |
+
|
416 |
+
return condition
|
417 |
+
|
418 |
+
def forward_shared(self, input_ids, freqs_cis, num_query=None):
|
419 |
+
embedds = self.embeddings(input_ids)
|
420 |
+
|
421 |
+
x = self.embed_drop(embedds)
|
422 |
+
num_query = input_ids.shape[-1] if num_query == None else num_query
|
423 |
+
queries = self.embeddings(torch.full((input_ids.shape[0], num_query), self.mask_token_id, device=input_ids.device))
|
424 |
+
|
425 |
+
x = self.layers(x, queries, freqs_cis=freqs_cis)
|
426 |
+
logits = self.head(self.norm(x)).float()
|
427 |
+
|
428 |
+
return logits
|
429 |
+
|
430 |
+
def forward(self, input_ids, condition, targets=None, debug=False):
|
431 |
+
# shift class id and dropout for classifier-free guidance
|
432 |
+
condition = self.preprocess_condition(condition, cond_drop_prob=self.config.class_dropout_prob)
|
433 |
+
|
434 |
+
# shuffle input
|
435 |
+
shuffled_ids, orders = batch_seq_shuffle(input_ids)
|
436 |
+
|
437 |
+
# shuffle RoPE
|
438 |
+
freqs_cis = self.freqs_cis.unsqueeze(0).repeat(input_ids.shape[0], 1, 1, 1).to(input_ids.device)
|
439 |
+
fixed_freqs_cis = freqs_cis[:, :1, ...]
|
440 |
+
shuffled_freqs_cis = batch_seq_shuffle(freqs_cis[:, 1:, ...], orders)[0]
|
441 |
+
freqs_cis = torch.cat([fixed_freqs_cis, shuffled_freqs_cis], dim=1)
|
442 |
+
|
443 |
+
# teacher-forcing input
|
444 |
+
logits = self.forward_shared(torch.cat([condition, shuffled_ids[:, :-1]], dim=-1), freqs_cis)
|
445 |
+
|
446 |
+
loss = None
|
447 |
+
if targets is not None:
|
448 |
+
targets = batch_seq_shuffle(targets, orders)[0]
|
449 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
450 |
+
|
451 |
+
return logits, loss
|
452 |
+
|
453 |
+
@torch.inference_mode()
|
454 |
+
def generate(
|
455 |
+
self,
|
456 |
+
condition,
|
457 |
+
guidance_scale=4.0,
|
458 |
+
cfg_schedule='linear',
|
459 |
+
sample_schedule='arccos',
|
460 |
+
temperature=1.0,
|
461 |
+
top_k=0,
|
462 |
+
top_p=1,
|
463 |
+
seq_len=256,
|
464 |
+
num_iter=64,
|
465 |
+
):
|
466 |
+
device = condition.device
|
467 |
+
num_samples = condition.shape[0]
|
468 |
+
freqs_cis_ = self.freqs_cis.unsqueeze(0).to(device)
|
469 |
+
|
470 |
+
# shift condition id
|
471 |
+
condition = self.preprocess_condition(condition, cond_drop_prob=0.0)
|
472 |
+
|
473 |
+
# generate a random order
|
474 |
+
orders = torch.rand(256, device=device).argsort(dim=0) + 1
|
475 |
+
|
476 |
+
last_pos = 0
|
477 |
+
last_range = range(0, 1) # for class token, hardcode
|
478 |
+
sequences = []
|
479 |
+
|
480 |
+
self.setup_kv_cache(enable=True)
|
481 |
+
for step in range(num_iter):
|
482 |
+
if sample_schedule == 'arccos':
|
483 |
+
mask_ratio = np.arccos(1. * (step + 1) / num_iter) / (math.pi * 0.5)
|
484 |
+
elif sample_schedule == 'cosine':
|
485 |
+
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
|
486 |
+
else:
|
487 |
+
raise NotImplementedError
|
488 |
+
|
489 |
+
mask_len = int(seq_len * mask_ratio)
|
490 |
+
mask_len = max(1, min(seq_len - last_pos - 1, mask_len))
|
491 |
+
|
492 |
+
num_pred = seq_len - last_pos - mask_len
|
493 |
+
if step == num_iter - 1:
|
494 |
+
num_pred = seq_len - last_pos
|
495 |
+
|
496 |
+
next_range = orders[range(last_pos, last_pos + num_pred)]
|
497 |
+
last_pos += num_pred
|
498 |
+
|
499 |
+
if cfg_schedule == 'linear':
|
500 |
+
cfg_scale = 1.0 + (guidance_scale - 1.0) * last_pos / seq_len
|
501 |
+
elif cfg_schedule == 'constant':
|
502 |
+
cfg_scale = guidance_scale
|
503 |
+
else:
|
504 |
+
raise NotImplementedError
|
505 |
+
|
506 |
+
"""
|
507 |
+
1. Since the cached key has already had rotary embedding applied,
|
508 |
+
we only need to input the current position's frequencies for key.
|
509 |
+
2. We need the next position's frequencies for query to achieve target-aware guidance.
|
510 |
+
"""
|
511 |
+
freqs_cis = torch.cat([
|
512 |
+
freqs_cis_[:, last_range, ...],
|
513 |
+
freqs_cis_[:, next_range, ...]], dim=1
|
514 |
+
)
|
515 |
+
if guidance_scale != 0:
|
516 |
+
if step == 0:
|
517 |
+
input_ids = torch.cat([condition, torch.full_like(condition, self.none_conds_id)], dim=0)
|
518 |
+
else:
|
519 |
+
input_ids = torch.cat([sequences[-1], sequences[-1]], dim=0)
|
520 |
+
|
521 |
+
logits = self.forward_shared(input_ids, freqs_cis, num_pred)
|
522 |
+
cond_logits, uncond_logits = logits[:num_samples], logits[num_samples:]
|
523 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
524 |
+
else:
|
525 |
+
raise NotImplementedError
|
526 |
+
|
527 |
+
# keep the logits of last n-tokens
|
528 |
+
logits = logits[:, -num_pred:] / max(temperature, 1e-5)
|
529 |
+
|
530 |
+
if top_k > 0 or top_p < 1.0:
|
531 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
532 |
+
|
533 |
+
probs = F.softmax(logits, dim=-1)
|
534 |
+
sampled = torch.multinomial(probs.flatten(0, 1), num_samples=1)
|
535 |
+
sequences.append(sampled.reshape(num_samples, -1))
|
536 |
+
|
537 |
+
last_range = next_range
|
538 |
+
|
539 |
+
self.setup_kv_cache(enable=False)
|
540 |
+
|
541 |
+
sequences = torch.cat(sequences, dim=-1)
|
542 |
+
return sequences[:, orders.argsort(dim=0)]
|
543 |
+
|
544 |
+
|
545 |
+
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
546 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
547 |
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
548 |
+
t = torch.arange(seq_len, device=freqs.device)
|
549 |
+
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
|
550 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
551 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
|
552 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
|
553 |
+
return cond_cache
|
554 |
+
|
555 |
+
|
556 |
+
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
557 |
+
# split the dimension into half, one for x and one for y
|
558 |
+
half_dim = n_elem // 2
|
559 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
560 |
+
t = torch.arange(grid_size, device=freqs.device)
|
561 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
562 |
+
freqs_grid = torch.concat([
|
563 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
564 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
565 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
566 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
567 |
+
cache = cache_grid.flatten(0, 1)
|
568 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
569 |
+
return cond_cache
|
570 |
+
|
571 |
+
|
572 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
573 |
+
# x: (bs, seq_len, n_head, head_dim)
|
574 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
575 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
576 |
+
freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
|
577 |
+
x_out2 = torch.stack([
|
578 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
579 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
580 |
+
], dim=-1)
|
581 |
+
x_out2 = x_out2.flatten(3)
|
582 |
+
return x_out2.type_as(x)
|
583 |
+
|
584 |
+
|
585 |
+
def top_k_top_p_filtering(
|
586 |
+
logits,
|
587 |
+
top_k: int = 0,
|
588 |
+
top_p: float = 1.0,
|
589 |
+
filter_value: float = -float("Inf"),
|
590 |
+
min_tokens_to_keep: int = 1,
|
591 |
+
):
|
592 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
593 |
+
Args:
|
594 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
595 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
596 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
597 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
598 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
599 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
600 |
+
"""
|
601 |
+
if top_k > 0:
|
602 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
603 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
604 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
605 |
+
logits[indices_to_remove] = filter_value
|
606 |
+
|
607 |
+
if top_p < 1.0:
|
608 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
609 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
610 |
+
|
611 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
612 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
613 |
+
if min_tokens_to_keep > 1:
|
614 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
615 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
616 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
617 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
618 |
+
sorted_indices_to_remove[..., 0] = 0
|
619 |
+
|
620 |
+
# scatter sorted tensors to original indexing
|
621 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
622 |
+
logits[indices_to_remove] = filter_value
|
623 |
+
return logits
|
624 |
+
|
625 |
+
|
626 |
+
def ARPG_XXL(**kwargs):
|
627 |
+
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs))
|
628 |
+
|
629 |
+
def ARPG_XL(**kwargs):
|
630 |
+
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs))
|
631 |
+
|
632 |
+
def ARPG_L(**kwargs):
|
633 |
+
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs))
|
634 |
+
|
635 |
+
|
636 |
+
ARPG_models = {'ARPG-L': ARPG_L, 'ARPG-XL': ARPG_XL, 'ARPG-XXL': ARPG_XXL}
|
pipeline.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import importlib.util
|
5 |
+
import sys
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from safetensors.torch import load_file
|
8 |
+
import os
|
9 |
+
from torchvision.utils import save_image
|
10 |
+
from PIL import Image
|
11 |
+
from safetensors.torch import load_file
|
12 |
+
from .vq_model import VQ_models
|
13 |
+
from .arpg import ARPG_models
|
14 |
+
|
15 |
+
# inheriting from DiffusionPipeline for HF
|
16 |
+
class ARPGModel(DiffusionPipeline):
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def __call__(self, *args, **kwargs):
|
23 |
+
"""
|
24 |
+
This method downloads the model and VAE components,
|
25 |
+
then executes the forward pass based on the user's input.
|
26 |
+
"""
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
# init the mar model architecture
|
30 |
+
model_type = kwargs.get("model_type", "ARPG-XXL")
|
31 |
+
|
32 |
+
# download the pretrained model and set diffloss parameters
|
33 |
+
if model_type == "ARPG-L":
|
34 |
+
model_path = "arpg_300m.pt"
|
35 |
+
elif model_type == "ARPG-XL":
|
36 |
+
model_path = "arpg_700m.pt"
|
37 |
+
elif model_type == "ARPG-XXL":
|
38 |
+
model_path = "arpg_1b.pt"
|
39 |
+
else:
|
40 |
+
raise NotImplementedError
|
41 |
+
# download and load the model weights (.safetensors or .pth)
|
42 |
+
model_checkpoint_path = hf_hub_download(
|
43 |
+
repo_id=kwargs.get("repo_id", "hp-l33/ARPG"),
|
44 |
+
filename=kwargs.get("model_filename", model_path)
|
45 |
+
)
|
46 |
+
|
47 |
+
model_fn = ARPG_models[model_type]
|
48 |
+
|
49 |
+
model = model_fn(
|
50 |
+
num_classes=1000,
|
51 |
+
vocab_size=16384
|
52 |
+
).cuda()
|
53 |
+
|
54 |
+
# use safetensors
|
55 |
+
state_dict = load_file(model_checkpoint_path)['state_dict']
|
56 |
+
model.load_state_dict(state_dict)
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
# download and load the vae
|
60 |
+
vae_checkpoint_path = hf_hub_download(
|
61 |
+
repo_id=kwargs.get("repo_id", "FoundationVision/LlamaGen"),
|
62 |
+
filename=kwargs.get("vae_filename", "vq_ds16_c2i.pt")
|
63 |
+
)
|
64 |
+
|
65 |
+
vae = VQ_models['VQ-16']()
|
66 |
+
|
67 |
+
vae_state_dict = load_file(vae_checkpoint_path)['model']
|
68 |
+
vae.load_state_dict(vae_state_dict)
|
69 |
+
vae = vae.to(device).eval()
|
70 |
+
|
71 |
+
# set up user-specified or default values for generation
|
72 |
+
seed = kwargs.get("seed", 6)
|
73 |
+
torch.manual_seed(seed)
|
74 |
+
np.random.seed(seed)
|
75 |
+
|
76 |
+
num_steps = kwargs.get("num_steps", 64)
|
77 |
+
cfg_scale = kwargs.get("cfg_scale", 4)
|
78 |
+
cfg_schedule = kwargs.get("cfg_schedule", "constant")
|
79 |
+
sample_schedule = kwargs.get("sample_schedule", "arccos")
|
80 |
+
temperature = kwargs.get("temperature", 1.0)
|
81 |
+
top_k = kwargs.get("top_k", 600)
|
82 |
+
class_labels = kwargs.get("class_labels", [207, 360, 388, 113, 355, 980, 323, 979])
|
83 |
+
|
84 |
+
# generate the tokens and images
|
85 |
+
with torch.cuda.amp.autocast():
|
86 |
+
sampled_tokens = model.generate(
|
87 |
+
condition=torch.Tensor(class_labels).long().cuda(),
|
88 |
+
num_iter=num_steps,
|
89 |
+
guidance_scale=cfg_scale,
|
90 |
+
cfg_schedule=cfg_schedule,
|
91 |
+
sample_schedule=sample_schedule,
|
92 |
+
temperature=temperature,
|
93 |
+
top_k=top_k,
|
94 |
+
)
|
95 |
+
sampled_images = vae.decode_code(sampled_tokens, shape=(len(class_labels), 8, 16, 16))
|
96 |
+
|
97 |
+
output_dir = kwargs.get("output_dir", "./")
|
98 |
+
os.makedirs(output_dir, exist_ok=True)
|
99 |
+
|
100 |
+
# save the images
|
101 |
+
image_path = os.path.join(output_dir, "sampled_image.png")
|
102 |
+
samples_per_row = kwargs.get("samples_per_row", 4)
|
103 |
+
|
104 |
+
save_image(
|
105 |
+
torch.clamp(127.5 * sampled_images + 128.0, 0, 255), image_path, nrow=int(samples_per_row), normalize=False
|
106 |
+
)
|
107 |
+
|
108 |
+
# return as a pil image
|
109 |
+
image = Image.open(image_path)
|
110 |
+
|
111 |
+
return image
|
vq_model.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from:
|
2 |
+
# taming-transformers: https://github.com/CompVis/taming-transformers
|
3 |
+
# maskgit: https://github.com/google-research/maskgit
|
4 |
+
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange, reduce
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class ModelArgs:
|
16 |
+
codebook_size: int = 16384
|
17 |
+
codebook_embed_dim: int = 8
|
18 |
+
codebook_l2_norm: bool = True
|
19 |
+
codebook_show_usage: bool = True
|
20 |
+
commit_loss_beta: float = 0.25
|
21 |
+
entropy_loss_ratio: float = 0.0
|
22 |
+
|
23 |
+
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
24 |
+
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
25 |
+
z_channels: int = 256
|
26 |
+
dropout_p: float = 0.0
|
27 |
+
num_res_blocks: int = 4
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
class VQModel(nn.Module):
|
32 |
+
def __init__(self, config: ModelArgs):
|
33 |
+
super().__init__()
|
34 |
+
self.config = config
|
35 |
+
self.encoder = Encoder(ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
36 |
+
self.decoder = Decoder(ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p)
|
37 |
+
|
38 |
+
self.quantize = VectorQuantizer(config.codebook_size, config.codebook_embed_dim,
|
39 |
+
config.commit_loss_beta, config.entropy_loss_ratio,
|
40 |
+
config.codebook_l2_norm, config.codebook_show_usage)
|
41 |
+
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
|
42 |
+
self.post_quant_conv = nn.Conv2d(config.codebook_embed_dim, config.z_channels, 1)
|
43 |
+
|
44 |
+
def encode(self, x):
|
45 |
+
h = self.encoder(x)
|
46 |
+
h = self.quant_conv(h)
|
47 |
+
quant, emb_loss, info = self.quantize(h)
|
48 |
+
return quant, emb_loss, info
|
49 |
+
|
50 |
+
def decode(self, quant):
|
51 |
+
quant = self.post_quant_conv(quant)
|
52 |
+
dec = self.decoder(quant)
|
53 |
+
return dec
|
54 |
+
|
55 |
+
def decode_code(self, code_b, shape=None, channel_first=True):
|
56 |
+
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
57 |
+
dec = self.decode(quant_b)
|
58 |
+
return dec
|
59 |
+
|
60 |
+
def forward(self, input):
|
61 |
+
quant, diff, _ = self.encode(input)
|
62 |
+
dec = self.decode(quant)
|
63 |
+
return dec, diff
|
64 |
+
|
65 |
+
|
66 |
+
class Encoder(nn.Module):
|
67 |
+
def __init__(self, in_channels=3, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2,
|
68 |
+
norm_type='group', dropout=0.0, resamp_with_conv=True, z_channels=256):
|
69 |
+
super().__init__()
|
70 |
+
self.num_resolutions = len(ch_mult)
|
71 |
+
self.num_res_blocks = num_res_blocks
|
72 |
+
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
|
73 |
+
|
74 |
+
# downsampling
|
75 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
76 |
+
self.conv_blocks = nn.ModuleList()
|
77 |
+
for i_level in range(self.num_resolutions):
|
78 |
+
conv_block = nn.Module()
|
79 |
+
# res & attn
|
80 |
+
res_block = nn.ModuleList()
|
81 |
+
attn_block = nn.ModuleList()
|
82 |
+
block_in = ch*in_ch_mult[i_level]
|
83 |
+
block_out = ch*ch_mult[i_level]
|
84 |
+
for _ in range(self.num_res_blocks):
|
85 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
86 |
+
block_in = block_out
|
87 |
+
if i_level == self.num_resolutions - 1:
|
88 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
89 |
+
conv_block.res = res_block
|
90 |
+
conv_block.attn = attn_block
|
91 |
+
# downsample
|
92 |
+
if i_level != self.num_resolutions-1:
|
93 |
+
conv_block.downsample = Downsample(block_in, resamp_with_conv)
|
94 |
+
self.conv_blocks.append(conv_block)
|
95 |
+
|
96 |
+
# middle
|
97 |
+
self.mid = nn.ModuleList()
|
98 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
99 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
100 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
101 |
+
|
102 |
+
# end
|
103 |
+
self.norm_out = Normalize(block_in, norm_type)
|
104 |
+
self.conv_out = nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
|
105 |
+
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
h = self.conv_in(x)
|
109 |
+
# downsampling
|
110 |
+
for i_level, block in enumerate(self.conv_blocks):
|
111 |
+
for i_block in range(self.num_res_blocks):
|
112 |
+
h = block.res[i_block](h)
|
113 |
+
if len(block.attn) > 0:
|
114 |
+
h = block.attn[i_block](h)
|
115 |
+
if i_level != self.num_resolutions - 1:
|
116 |
+
h = block.downsample(h)
|
117 |
+
|
118 |
+
# middle
|
119 |
+
for mid_block in self.mid:
|
120 |
+
h = mid_block(h)
|
121 |
+
|
122 |
+
# end
|
123 |
+
h = self.norm_out(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv_out(h)
|
126 |
+
return h
|
127 |
+
|
128 |
+
|
129 |
+
class Decoder(nn.Module):
|
130 |
+
def __init__(self, z_channels=256, ch=128, ch_mult=(1,1,2,2,4), num_res_blocks=2, norm_type="group",
|
131 |
+
dropout=0.0, resamp_with_conv=True, out_channels=3):
|
132 |
+
super().__init__()
|
133 |
+
self.num_resolutions = len(ch_mult)
|
134 |
+
self.num_res_blocks = num_res_blocks
|
135 |
+
|
136 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
137 |
+
# z to block_in
|
138 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
139 |
+
|
140 |
+
# middle
|
141 |
+
self.mid = nn.ModuleList()
|
142 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
143 |
+
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
144 |
+
self.mid.append(ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type))
|
145 |
+
|
146 |
+
# upsampling
|
147 |
+
self.conv_blocks = nn.ModuleList()
|
148 |
+
for i_level in reversed(range(self.num_resolutions)):
|
149 |
+
conv_block = nn.Module()
|
150 |
+
# res & attn
|
151 |
+
res_block = nn.ModuleList()
|
152 |
+
attn_block = nn.ModuleList()
|
153 |
+
block_out = ch*ch_mult[i_level]
|
154 |
+
for _ in range(self.num_res_blocks + 1):
|
155 |
+
res_block.append(ResnetBlock(block_in, block_out, dropout=dropout, norm_type=norm_type))
|
156 |
+
block_in = block_out
|
157 |
+
if i_level == self.num_resolutions - 1:
|
158 |
+
attn_block.append(AttnBlock(block_in, norm_type))
|
159 |
+
conv_block.res = res_block
|
160 |
+
conv_block.attn = attn_block
|
161 |
+
# downsample
|
162 |
+
if i_level != 0:
|
163 |
+
conv_block.upsample = Upsample(block_in, resamp_with_conv)
|
164 |
+
self.conv_blocks.append(conv_block)
|
165 |
+
|
166 |
+
# end
|
167 |
+
self.norm_out = Normalize(block_in, norm_type)
|
168 |
+
self.conv_out = nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
|
169 |
+
|
170 |
+
@property
|
171 |
+
def last_layer(self):
|
172 |
+
return self.conv_out.weight
|
173 |
+
|
174 |
+
def forward(self, z):
|
175 |
+
# z to block_in
|
176 |
+
h = self.conv_in(z)
|
177 |
+
|
178 |
+
# middle
|
179 |
+
for mid_block in self.mid:
|
180 |
+
h = mid_block(h)
|
181 |
+
|
182 |
+
# upsampling
|
183 |
+
for i_level, block in enumerate(self.conv_blocks):
|
184 |
+
for i_block in range(self.num_res_blocks + 1):
|
185 |
+
h = block.res[i_block](h)
|
186 |
+
if len(block.attn) > 0:
|
187 |
+
h = block.attn[i_block](h)
|
188 |
+
if i_level != self.num_resolutions - 1:
|
189 |
+
h = block.upsample(h)
|
190 |
+
|
191 |
+
# end
|
192 |
+
h = self.norm_out(h)
|
193 |
+
h = nonlinearity(h)
|
194 |
+
h = self.conv_out(h)
|
195 |
+
return h
|
196 |
+
|
197 |
+
|
198 |
+
class VectorQuantizer(nn.Module):
|
199 |
+
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
|
200 |
+
super().__init__()
|
201 |
+
self.n_e = n_e
|
202 |
+
self.e_dim = e_dim
|
203 |
+
self.beta = beta
|
204 |
+
self.entropy_loss_ratio = entropy_loss_ratio
|
205 |
+
self.l2_norm = l2_norm
|
206 |
+
self.show_usage = show_usage
|
207 |
+
|
208 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
209 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
210 |
+
if self.l2_norm:
|
211 |
+
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
|
212 |
+
if self.show_usage:
|
213 |
+
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
|
214 |
+
|
215 |
+
|
216 |
+
def forward(self, z):
|
217 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
218 |
+
z = torch.einsum('b c h w -> b h w c', z).contiguous()
|
219 |
+
z_flattened = z.view(-1, self.e_dim)
|
220 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
221 |
+
|
222 |
+
if self.l2_norm:
|
223 |
+
z = F.normalize(z, p=2, dim=-1)
|
224 |
+
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
225 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
226 |
+
else:
|
227 |
+
embedding = self.embedding.weight
|
228 |
+
|
229 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
230 |
+
torch.sum(embedding**2, dim=1) - 2 * \
|
231 |
+
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
|
232 |
+
|
233 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
234 |
+
z_q = embedding[min_encoding_indices].view(z.shape)
|
235 |
+
perplexity = None
|
236 |
+
min_encodings = None
|
237 |
+
vq_loss = None
|
238 |
+
commit_loss = None
|
239 |
+
entropy_loss = None
|
240 |
+
codebook_usage = 0
|
241 |
+
|
242 |
+
if self.show_usage and self.training:
|
243 |
+
cur_len = min_encoding_indices.shape[0]
|
244 |
+
self.codebook_used[:-cur_len] = self.codebook_used[cur_len:].clone()
|
245 |
+
self.codebook_used[-cur_len:] = min_encoding_indices
|
246 |
+
codebook_usage = len(torch.unique(self.codebook_used)) / self.n_e
|
247 |
+
|
248 |
+
# compute loss for embedding
|
249 |
+
if self.training:
|
250 |
+
vq_loss = torch.mean((z_q - z.detach()) ** 2)
|
251 |
+
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
|
252 |
+
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
|
253 |
+
|
254 |
+
# preserve gradients
|
255 |
+
z_q = z + (z_q - z).detach()
|
256 |
+
|
257 |
+
# reshape back to match original input shape
|
258 |
+
z_q = torch.einsum('b h w c -> b c h w', z_q)
|
259 |
+
|
260 |
+
return z_q, (vq_loss, commit_loss, entropy_loss, codebook_usage), (perplexity, min_encodings, min_encoding_indices)
|
261 |
+
|
262 |
+
def get_codebook_entry(self, indices, shape=None, channel_first=True):
|
263 |
+
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
264 |
+
if self.l2_norm:
|
265 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
266 |
+
else:
|
267 |
+
embedding = self.embedding.weight
|
268 |
+
z_q = embedding[indices] # (b*h*w, c)
|
269 |
+
|
270 |
+
if shape is not None:
|
271 |
+
if channel_first:
|
272 |
+
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
273 |
+
# reshape back to match original input shape
|
274 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
275 |
+
else:
|
276 |
+
z_q = z_q.view(shape)
|
277 |
+
return z_q
|
278 |
+
|
279 |
+
|
280 |
+
class ResnetBlock(nn.Module):
|
281 |
+
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group'):
|
282 |
+
super().__init__()
|
283 |
+
self.in_channels = in_channels
|
284 |
+
out_channels = in_channels if out_channels is None else out_channels
|
285 |
+
self.out_channels = out_channels
|
286 |
+
self.use_conv_shortcut = conv_shortcut
|
287 |
+
|
288 |
+
self.norm1 = Normalize(in_channels, norm_type)
|
289 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
290 |
+
self.norm2 = Normalize(out_channels, norm_type)
|
291 |
+
self.dropout = nn.Dropout(dropout)
|
292 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
293 |
+
|
294 |
+
if self.in_channels != self.out_channels:
|
295 |
+
if self.use_conv_shortcut:
|
296 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
297 |
+
else:
|
298 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
299 |
+
|
300 |
+
def forward(self, x):
|
301 |
+
h = x
|
302 |
+
h = self.norm1(h)
|
303 |
+
h = nonlinearity(h)
|
304 |
+
h = self.conv1(h)
|
305 |
+
h = self.norm2(h)
|
306 |
+
h = nonlinearity(h)
|
307 |
+
h = self.dropout(h)
|
308 |
+
h = self.conv2(h)
|
309 |
+
|
310 |
+
if self.in_channels != self.out_channels:
|
311 |
+
if self.use_conv_shortcut:
|
312 |
+
x = self.conv_shortcut(x)
|
313 |
+
else:
|
314 |
+
x = self.nin_shortcut(x)
|
315 |
+
return x+h
|
316 |
+
|
317 |
+
|
318 |
+
class AttnBlock(nn.Module):
|
319 |
+
def __init__(self, in_channels, norm_type='group'):
|
320 |
+
super().__init__()
|
321 |
+
self.norm = Normalize(in_channels, norm_type)
|
322 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
323 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
324 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
325 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
326 |
+
|
327 |
+
|
328 |
+
def forward(self, x):
|
329 |
+
h_ = x
|
330 |
+
h_ = self.norm(h_)
|
331 |
+
q = self.q(h_)
|
332 |
+
k = self.k(h_)
|
333 |
+
v = self.v(h_)
|
334 |
+
|
335 |
+
# compute attention
|
336 |
+
b, c, h, w = q.shape
|
337 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
338 |
+
k = rearrange(k, 'b c h w -> b (h w) c')
|
339 |
+
v = rearrange(v, 'b c h w -> b (h w) c')
|
340 |
+
|
341 |
+
# q = q.reshape(b,c,h*w)
|
342 |
+
# q = q.permute(0,2,1) # b,hw,c
|
343 |
+
# k = k.reshape(b,c,h*w) # b,c,hw
|
344 |
+
|
345 |
+
# w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
346 |
+
# w_ = w_ * (int(c)**(-0.5))
|
347 |
+
# w_ = F.softmax(w_, dim=2)
|
348 |
+
|
349 |
+
# # attend to values
|
350 |
+
# v = v.reshape(b,c,h*w)
|
351 |
+
# w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
352 |
+
# h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
353 |
+
|
354 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
355 |
+
h_ = rearrange(h_, 'b (h w) c -> b c h w', h=h, w=w)
|
356 |
+
# h_ = h_.reshape(b,c,h,w)
|
357 |
+
|
358 |
+
h_ = self.proj_out(h_)
|
359 |
+
|
360 |
+
return x+h_
|
361 |
+
|
362 |
+
|
363 |
+
def nonlinearity(x):
|
364 |
+
# swish
|
365 |
+
return x*torch.sigmoid(x)
|
366 |
+
|
367 |
+
|
368 |
+
def Normalize(in_channels, norm_type='group'):
|
369 |
+
assert norm_type in ['group', 'batch']
|
370 |
+
if norm_type == 'group':
|
371 |
+
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
372 |
+
elif norm_type == 'batch':
|
373 |
+
return nn.SyncBatchNorm(in_channels)
|
374 |
+
|
375 |
+
|
376 |
+
class Upsample(nn.Module):
|
377 |
+
def __init__(self, in_channels, with_conv):
|
378 |
+
super().__init__()
|
379 |
+
self.with_conv = with_conv
|
380 |
+
if self.with_conv:
|
381 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
382 |
+
|
383 |
+
def forward(self, x):
|
384 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
385 |
+
if self.with_conv:
|
386 |
+
x = self.conv(x)
|
387 |
+
return x
|
388 |
+
|
389 |
+
|
390 |
+
class Downsample(nn.Module):
|
391 |
+
def __init__(self, in_channels, with_conv):
|
392 |
+
super().__init__()
|
393 |
+
self.with_conv = with_conv
|
394 |
+
if self.with_conv:
|
395 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
396 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
397 |
+
|
398 |
+
def forward(self, x):
|
399 |
+
if self.with_conv:
|
400 |
+
pad = (0,1,0,1)
|
401 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
402 |
+
x = self.conv(x)
|
403 |
+
else:
|
404 |
+
x = F.avg_pool2d(x, kernel_size=2, stride=2)
|
405 |
+
return x
|
406 |
+
|
407 |
+
|
408 |
+
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
|
409 |
+
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
|
410 |
+
flat_affinity /= temperature
|
411 |
+
probs = F.softmax(flat_affinity, dim=-1)
|
412 |
+
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
|
413 |
+
if loss_type == "softmax":
|
414 |
+
target_probs = probs
|
415 |
+
else:
|
416 |
+
raise ValueError("Entropy loss {} not supported".format(loss_type))
|
417 |
+
avg_probs = torch.mean(target_probs, dim=0)
|
418 |
+
avg_entropy = - torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
|
419 |
+
sample_entropy = - torch.mean(torch.sum(target_probs * log_probs, dim=-1))
|
420 |
+
loss = sample_entropy - avg_entropy
|
421 |
+
return loss
|
422 |
+
|
423 |
+
|
424 |
+
def compute_entropy_loss2(
|
425 |
+
logits,
|
426 |
+
temperature=0.01,
|
427 |
+
sample_minimization_weight=1.0,
|
428 |
+
batch_maximization_weight=1.0,
|
429 |
+
eps=1e-5,
|
430 |
+
):
|
431 |
+
"""
|
432 |
+
Entropy loss of unnormalized logits
|
433 |
+
|
434 |
+
logits: Affinities are over the last dimension
|
435 |
+
|
436 |
+
https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
|
437 |
+
LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
|
438 |
+
"""
|
439 |
+
probs = F.softmax(logits / temperature, -1)
|
440 |
+
log_probs = F.log_softmax(logits / temperature + eps, -1)
|
441 |
+
|
442 |
+
avg_probs = reduce(probs, "... D -> D", "mean")
|
443 |
+
|
444 |
+
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))
|
445 |
+
|
446 |
+
sample_entropy = -torch.sum(probs * log_probs, -1)
|
447 |
+
sample_entropy = torch.mean(sample_entropy)
|
448 |
+
|
449 |
+
loss = (sample_minimization_weight * sample_entropy) - (
|
450 |
+
batch_maximization_weight * avg_entropy
|
451 |
+
)
|
452 |
+
|
453 |
+
return sample_entropy, avg_entropy, loss
|
454 |
+
|
455 |
+
|
456 |
+
def VQ_16(**kwargs):
|
457 |
+
return VQModel(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
|
458 |
+
|
459 |
+
VQ_models = {'VQ-16': VQ_16}
|