Update README.md
Browse files
README.md
CHANGED
@@ -24,22 +24,21 @@ You can easily load it through the Hugging Face DiffusionPipeline and optionally
|
|
24 |
```python
|
25 |
from diffusers import DiffusionPipeline
|
26 |
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
# generate an image with the model
|
31 |
generated_image = pipeline(
|
32 |
-
model_type="ARPG-XL",
|
33 |
-
seed=0,
|
34 |
-
num_steps=64,
|
35 |
-
class_labels=
|
36 |
-
cfg_scale=4,
|
37 |
-
output_dir="./images",
|
38 |
-
cfg_schedule
|
39 |
-
sample_schedule
|
40 |
)
|
41 |
|
42 |
-
# display the generated image
|
43 |
generated_image.show()
|
44 |
```
|
45 |
|
|
|
24 |
```python
|
25 |
from diffusers import DiffusionPipeline
|
26 |
|
27 |
+
pipeline = DiffusionPipeline.from_pretrained("hp-l33/ARPG", custom_pipeline="hp-l33/ARPG")
|
28 |
+
|
29 |
+
class_labels = [207, 360, 388, 113, 355, 980, 323, 979]
|
30 |
|
|
|
31 |
generated_image = pipeline(
|
32 |
+
model_type="ARPG-XL", # choose from 'ARPG-L', 'ARPG-XL', or 'ARPG-XXL'
|
33 |
+
seed=0, # set a seed for reproducibility
|
34 |
+
num_steps=64, # number of autoregressive steps
|
35 |
+
class_labels=class_labels, # provide valid ImageNet class labels
|
36 |
+
cfg_scale=4, # classifier-free guidance scale
|
37 |
+
output_dir="./images", # directory to save generated images
|
38 |
+
cfg_schedule="constant", # choose between 'constant' (suggested) and 'linear'
|
39 |
+
sample_schedule="arccos", # choose between 'arccos' (suggested) and 'cosine'
|
40 |
)
|
41 |
|
|
|
42 |
generated_image.show()
|
43 |
```
|
44 |
|