--- base_model: unsloth/SmolLM2-1.7B library_name: peft license: apache-2.0 language: - tr metrics: - name: ROUGE-1 type: rouge value: 0.2439 - name: ROUGE-2 type: rouge value: 0.1303 - name: ROUGE-L type: rouge value: 0.2147 - name: BLEU type: bleu value: 0.0406 - name: METEOR type: meteor value: 0.2262 - name: BERTScore Precision type: bertscore value: 0.5286 - name: BERTScore Recall type: bertscore value: 0.5834 - name: BERTScore F1 type: bertscore value: 0.553 --- +---------------------+--------+ | Metrik | Değer | +---------------------+--------+ | ROUGE-1 | 0.2439 | | ROUGE-2 | 0.1303 | | ROUGE-L | 0.2147 | | BLEU | 0.0406 | | METEOR | 0.2262 | | BERTScore Precision | 0.5286 | | BERTScore Recall | 0.5834 | | BERTScore F1 | 0.553 | +---------------------+--------+ ✅ Model evaluation is complete and all results are logged to `wandb`. --- # Model Card for SmolLM2-Ziraat-Turkish-v1 ## 🧠 Model Summary **SmolLM2-Ziraat-Turkish-v1** is a fine-tuned version of the [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) model, trained using [Unsloth](https://github.com/unslothai/unsloth) and PEFT (Parameter-Efficient Fine-Tuning). This model has been tailored for Turkish language tasks with a focus on agriculture, finance, and general-purpose conversation. ## 🇹🇷 Model Özeti **SmolLM2-Ziraat-Turkish-v1**, [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) tabanlı bir model olup, [Unsloth](https://github.com/unslothai/unsloth) ve PEFT (Parameter-Efficient Fine-Tuning) yöntemleriyle Türkçe diline yönelik olarak eğitilmiştir. Tarım, finans ve genel sohbet amaçlı kullanım senaryoları için optimize edilmiştir. --- ## 🔍 Model Details / Model Detayları - **Developed by / Geliştiren:** [hosmankarabulut](https://huggingface.co/hosmankarabulut) - **Model type / Model türü:** Causal Language Model (AutoRegressive) - **Language / Dil:** Turkish (Türkçe) - **License / Lisans:** apache-2.0 - **Fine-tuned with / Eğitim Aracı:** [Unsloth](https://github.com/unslothai/unsloth) + PEFT - **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) --- ## 🔗 Sources / Kaynaklar - **Model Repository / Model Deposu:** [https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1](https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1) - **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) --- ## ✅ Intended Uses / Amaçlanan Kullanım - Turkish chatbots, Q&A systems - Agricultural and financial assistants - General-purpose Turkish LLMs --- ## 🚫 Out-of-Scope Use / Uygun Olmayan Kullanım - Medical, legal, or high-risk decision-making - Misinformation or unethical applications --- ## ⚠️ Bias, Risks and Limitations / Önyargılar, Riskler ve Sınırlamalar Model may still contain biases inherited from the base model. Performance is best within Turkish language and domain-specific contexts (agriculture, finance). --- ## 🧪 Training & Evaluation / Eğitim ve Değerlendirme - **Training Library / Eğitim Kütüphanesi:** [Unsloth](https://github.com/unslothai/unsloth) - **Hardware Used / Kullanılan Donanım:** RTX 3090 - **Precision:** bf16 (mixed precision) - **Dataset:** Özel Türkçe veriseti (tarım odaklı) - **Evaluation Tool:** `wandb` (Weights & Biases) ### 📊 Evaluation Results / Değerlendirme Sonuçları | Metric | Value | |----------------------|--------| | ROUGE-1 | 0.2439 | | ROUGE-2 | 0.1303 | | ROUGE-L | 0.2147 | | BLEU | 0.0406 | | METEOR | 0.2262 | | BERTScore Precision | 0.5286 | | BERTScore Recall | 0.5834 | | BERTScore F1 | 0.553 | ✅ Tüm metrikler başarıyla hesaplandı ve `wandb` üzerinde kaydedildi. --- ## 💡 Quickstart / Hızlı Başlangıç ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1") inputs = tokenizer("Türkiye'de tarım politikaları hakkında ne düşünüyorsun?", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True))