Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: harheem/bge-m3-nvidia-ko-v1
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: sentence-transformers
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- cosine_accuracy@1
|
9 |
+
- cosine_accuracy@3
|
10 |
+
- cosine_accuracy@5
|
11 |
+
- cosine_accuracy@10
|
12 |
+
- cosine_precision@1
|
13 |
+
- cosine_precision@3
|
14 |
+
- cosine_precision@5
|
15 |
+
- cosine_precision@10
|
16 |
+
- cosine_recall@1
|
17 |
+
- cosine_recall@3
|
18 |
+
- cosine_recall@5
|
19 |
+
- cosine_recall@10
|
20 |
+
- cosine_ndcg@10
|
21 |
+
- cosine_mrr@10
|
22 |
+
- cosine_map@100
|
23 |
+
pipeline_tag: sentence-similarity
|
24 |
+
tags:
|
25 |
+
- sentence-transformers
|
26 |
+
- sentence-similarity
|
27 |
+
- feature-extraction
|
28 |
+
- dataset_size:1K<n<10K
|
29 |
+
- loss:MatryoshkaLoss
|
30 |
+
- loss:MultipleNegativesRankingLoss
|
31 |
+
- llama-cpp
|
32 |
+
- gguf-my-repo
|
33 |
+
widget:
|
34 |
+
- source_sentence: 하이브리다이저란 무엇인가요?
|
35 |
+
sentences:
|
36 |
+
- 하이퍼바이저는 보안에서 어떤 역할을 합니까?
|
37 |
+
- 지난 몇 년간 CUDA 생태계는 어떻게 발전해 왔나요?
|
38 |
+
- 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
|
39 |
+
- source_sentence: 임시 구독의 용도는 무엇입니까?
|
40 |
+
sentences:
|
41 |
+
- 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
|
42 |
+
- CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
|
43 |
+
- CUDA 8이 해결하는 계산상의 과제에는 어떤 것이 있습니까?
|
44 |
+
- source_sentence: '''saxpy''는 무엇을 뜻하나요?'
|
45 |
+
sentences:
|
46 |
+
- CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
|
47 |
+
- Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
|
48 |
+
- 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
|
49 |
+
- source_sentence: USD/Hydra란 무엇인가요?
|
50 |
+
sentences:
|
51 |
+
- 쿠다란 무엇인가요?
|
52 |
+
- y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
|
53 |
+
- Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
|
54 |
+
- source_sentence: CUDAcast란 무엇인가요?
|
55 |
+
sentences:
|
56 |
+
- CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
|
57 |
+
- 이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?
|
58 |
+
- WSL 2에서 NVML의 목적은 무엇입니까?
|
59 |
+
model-index:
|
60 |
+
- name: BGE base Financial Matryoshka
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: information-retrieval
|
64 |
+
name: Information Retrieval
|
65 |
+
dataset:
|
66 |
+
name: dim 768
|
67 |
+
type: dim_768
|
68 |
+
metrics:
|
69 |
+
- type: cosine_accuracy@1
|
70 |
+
value: 0.5443037974683544
|
71 |
+
name: Cosine Accuracy@1
|
72 |
+
- type: cosine_accuracy@3
|
73 |
+
value: 0.7749648382559775
|
74 |
+
name: Cosine Accuracy@3
|
75 |
+
- type: cosine_accuracy@5
|
76 |
+
value: 0.8523206751054853
|
77 |
+
name: Cosine Accuracy@5
|
78 |
+
- type: cosine_accuracy@10
|
79 |
+
value: 0.9409282700421941
|
80 |
+
name: Cosine Accuracy@10
|
81 |
+
- type: cosine_precision@1
|
82 |
+
value: 0.5443037974683544
|
83 |
+
name: Cosine Precision@1
|
84 |
+
- type: cosine_precision@3
|
85 |
+
value: 0.2583216127519925
|
86 |
+
name: Cosine Precision@3
|
87 |
+
- type: cosine_precision@5
|
88 |
+
value: 0.17046413502109703
|
89 |
+
name: Cosine Precision@5
|
90 |
+
- type: cosine_precision@10
|
91 |
+
value: 0.09409282700421939
|
92 |
+
name: Cosine Precision@10
|
93 |
+
- type: cosine_recall@1
|
94 |
+
value: 0.5443037974683544
|
95 |
+
name: Cosine Recall@1
|
96 |
+
- type: cosine_recall@3
|
97 |
+
value: 0.7749648382559775
|
98 |
+
name: Cosine Recall@3
|
99 |
+
- type: cosine_recall@5
|
100 |
+
value: 0.8523206751054853
|
101 |
+
name: Cosine Recall@5
|
102 |
+
- type: cosine_recall@10
|
103 |
+
value: 0.9409282700421941
|
104 |
+
name: Cosine Recall@10
|
105 |
+
- type: cosine_ndcg@10
|
106 |
+
value: 0.7411108924386547
|
107 |
+
name: Cosine Ndcg@10
|
108 |
+
- type: cosine_mrr@10
|
109 |
+
value: 0.677065054807671
|
110 |
+
name: Cosine Mrr@10
|
111 |
+
- type: cosine_map@100
|
112 |
+
value: 0.6802131506478553
|
113 |
+
name: Cosine Map@100
|
114 |
+
- task:
|
115 |
+
type: information-retrieval
|
116 |
+
name: Information Retrieval
|
117 |
+
dataset:
|
118 |
+
name: dim 512
|
119 |
+
type: dim_512
|
120 |
+
metrics:
|
121 |
+
- type: cosine_accuracy@1
|
122 |
+
value: 0.5386779184247539
|
123 |
+
name: Cosine Accuracy@1
|
124 |
+
- type: cosine_accuracy@3
|
125 |
+
value: 0.7749648382559775
|
126 |
+
name: Cosine Accuracy@3
|
127 |
+
- type: cosine_accuracy@5
|
128 |
+
value: 0.8593530239099859
|
129 |
+
name: Cosine Accuracy@5
|
130 |
+
- type: cosine_accuracy@10
|
131 |
+
value: 0.9451476793248945
|
132 |
+
name: Cosine Accuracy@10
|
133 |
+
- type: cosine_precision@1
|
134 |
+
value: 0.5386779184247539
|
135 |
+
name: Cosine Precision@1
|
136 |
+
- type: cosine_precision@3
|
137 |
+
value: 0.2583216127519925
|
138 |
+
name: Cosine Precision@3
|
139 |
+
- type: cosine_precision@5
|
140 |
+
value: 0.17187060478199717
|
141 |
+
name: Cosine Precision@5
|
142 |
+
- type: cosine_precision@10
|
143 |
+
value: 0.09451476793248943
|
144 |
+
name: Cosine Precision@10
|
145 |
+
- type: cosine_recall@1
|
146 |
+
value: 0.5386779184247539
|
147 |
+
name: Cosine Recall@1
|
148 |
+
- type: cosine_recall@3
|
149 |
+
value: 0.7749648382559775
|
150 |
+
name: Cosine Recall@3
|
151 |
+
- type: cosine_recall@5
|
152 |
+
value: 0.8593530239099859
|
153 |
+
name: Cosine Recall@5
|
154 |
+
- type: cosine_recall@10
|
155 |
+
value: 0.9451476793248945
|
156 |
+
name: Cosine Recall@10
|
157 |
+
- type: cosine_ndcg@10
|
158 |
+
value: 0.7413571133247474
|
159 |
+
name: Cosine Ndcg@10
|
160 |
+
- type: cosine_mrr@10
|
161 |
+
value: 0.6759917844306029
|
162 |
+
name: Cosine Mrr@10
|
163 |
+
- type: cosine_map@100
|
164 |
+
value: 0.678939165210132
|
165 |
+
name: Cosine Map@100
|
166 |
+
- task:
|
167 |
+
type: information-retrieval
|
168 |
+
name: Information Retrieval
|
169 |
+
dataset:
|
170 |
+
name: dim 256
|
171 |
+
type: dim_256
|
172 |
+
metrics:
|
173 |
+
- type: cosine_accuracy@1
|
174 |
+
value: 0.540084388185654
|
175 |
+
name: Cosine Accuracy@1
|
176 |
+
- type: cosine_accuracy@3
|
177 |
+
value: 0.7791842475386779
|
178 |
+
name: Cosine Accuracy@3
|
179 |
+
- type: cosine_accuracy@5
|
180 |
+
value: 0.8621659634317862
|
181 |
+
name: Cosine Accuracy@5
|
182 |
+
- type: cosine_accuracy@10
|
183 |
+
value: 0.9423347398030942
|
184 |
+
name: Cosine Accuracy@10
|
185 |
+
- type: cosine_precision@1
|
186 |
+
value: 0.540084388185654
|
187 |
+
name: Cosine Precision@1
|
188 |
+
- type: cosine_precision@3
|
189 |
+
value: 0.25972808251289264
|
190 |
+
name: Cosine Precision@3
|
191 |
+
- type: cosine_precision@5
|
192 |
+
value: 0.1724331926863572
|
193 |
+
name: Cosine Precision@5
|
194 |
+
- type: cosine_precision@10
|
195 |
+
value: 0.09423347398030943
|
196 |
+
name: Cosine Precision@10
|
197 |
+
- type: cosine_recall@1
|
198 |
+
value: 0.540084388185654
|
199 |
+
name: Cosine Recall@1
|
200 |
+
- type: cosine_recall@3
|
201 |
+
value: 0.7791842475386779
|
202 |
+
name: Cosine Recall@3
|
203 |
+
- type: cosine_recall@5
|
204 |
+
value: 0.8621659634317862
|
205 |
+
name: Cosine Recall@5
|
206 |
+
- type: cosine_recall@10
|
207 |
+
value: 0.9423347398030942
|
208 |
+
name: Cosine Recall@10
|
209 |
+
- type: cosine_ndcg@10
|
210 |
+
value: 0.7403981257690416
|
211 |
+
name: Cosine Ndcg@10
|
212 |
+
- type: cosine_mrr@10
|
213 |
+
value: 0.6756379344986938
|
214 |
+
name: Cosine Mrr@10
|
215 |
+
- type: cosine_map@100
|
216 |
+
value: 0.6787046866761269
|
217 |
+
name: Cosine Map@100
|
218 |
+
- task:
|
219 |
+
type: information-retrieval
|
220 |
+
name: Information Retrieval
|
221 |
+
dataset:
|
222 |
+
name: dim 128
|
223 |
+
type: dim_128
|
224 |
+
metrics:
|
225 |
+
- type: cosine_accuracy@1
|
226 |
+
value: 0.5218002812939522
|
227 |
+
name: Cosine Accuracy@1
|
228 |
+
- type: cosine_accuracy@3
|
229 |
+
value: 0.7679324894514767
|
230 |
+
name: Cosine Accuracy@3
|
231 |
+
- type: cosine_accuracy@5
|
232 |
+
value: 0.8635724331926864
|
233 |
+
name: Cosine Accuracy@5
|
234 |
+
- type: cosine_accuracy@10
|
235 |
+
value: 0.9367088607594937
|
236 |
+
name: Cosine Accuracy@10
|
237 |
+
- type: cosine_precision@1
|
238 |
+
value: 0.5218002812939522
|
239 |
+
name: Cosine Precision@1
|
240 |
+
- type: cosine_precision@3
|
241 |
+
value: 0.2559774964838256
|
242 |
+
name: Cosine Precision@3
|
243 |
+
- type: cosine_precision@5
|
244 |
+
value: 0.17271448663853725
|
245 |
+
name: Cosine Precision@5
|
246 |
+
- type: cosine_precision@10
|
247 |
+
value: 0.09367088607594935
|
248 |
+
name: Cosine Precision@10
|
249 |
+
- type: cosine_recall@1
|
250 |
+
value: 0.5218002812939522
|
251 |
+
name: Cosine Recall@1
|
252 |
+
- type: cosine_recall@3
|
253 |
+
value: 0.7679324894514767
|
254 |
+
name: Cosine Recall@3
|
255 |
+
- type: cosine_recall@5
|
256 |
+
value: 0.8635724331926864
|
257 |
+
name: Cosine Recall@5
|
258 |
+
- type: cosine_recall@10
|
259 |
+
value: 0.9367088607594937
|
260 |
+
name: Cosine Recall@10
|
261 |
+
- type: cosine_ndcg@10
|
262 |
+
value: 0.7305864977688176
|
263 |
+
name: Cosine Ndcg@10
|
264 |
+
- type: cosine_mrr@10
|
265 |
+
value: 0.6641673922264634
|
266 |
+
name: Cosine Mrr@10
|
267 |
+
- type: cosine_map@100
|
268 |
+
value: 0.6671648971944116
|
269 |
+
name: Cosine Map@100
|
270 |
+
- task:
|
271 |
+
type: information-retrieval
|
272 |
+
name: Information Retrieval
|
273 |
+
dataset:
|
274 |
+
name: dim 64
|
275 |
+
type: dim_64
|
276 |
+
metrics:
|
277 |
+
- type: cosine_accuracy@1
|
278 |
+
value: 0.509142053445851
|
279 |
+
name: Cosine Accuracy@1
|
280 |
+
- type: cosine_accuracy@3
|
281 |
+
value: 0.7426160337552743
|
282 |
+
name: Cosine Accuracy@3
|
283 |
+
- type: cosine_accuracy@5
|
284 |
+
value: 0.8284106891701828
|
285 |
+
name: Cosine Accuracy@5
|
286 |
+
- type: cosine_accuracy@10
|
287 |
+
value: 0.9310829817158931
|
288 |
+
name: Cosine Accuracy@10
|
289 |
+
- type: cosine_precision@1
|
290 |
+
value: 0.509142053445851
|
291 |
+
name: Cosine Precision@1
|
292 |
+
- type: cosine_precision@3
|
293 |
+
value: 0.24753867791842477
|
294 |
+
name: Cosine Precision@3
|
295 |
+
- type: cosine_precision@5
|
296 |
+
value: 0.16568213783403654
|
297 |
+
name: Cosine Precision@5
|
298 |
+
- type: cosine_precision@10
|
299 |
+
value: 0.09310829817158929
|
300 |
+
name: Cosine Precision@10
|
301 |
+
- type: cosine_recall@1
|
302 |
+
value: 0.509142053445851
|
303 |
+
name: Cosine Recall@1
|
304 |
+
- type: cosine_recall@3
|
305 |
+
value: 0.7426160337552743
|
306 |
+
name: Cosine Recall@3
|
307 |
+
- type: cosine_recall@5
|
308 |
+
value: 0.8284106891701828
|
309 |
+
name: Cosine Recall@5
|
310 |
+
- type: cosine_recall@10
|
311 |
+
value: 0.9310829817158931
|
312 |
+
name: Cosine Recall@10
|
313 |
+
- type: cosine_ndcg@10
|
314 |
+
value: 0.7135661304090457
|
315 |
+
name: Cosine Ndcg@10
|
316 |
+
- type: cosine_mrr@10
|
317 |
+
value: 0.6444829549259928
|
318 |
+
name: Cosine Mrr@10
|
319 |
+
- type: cosine_map@100
|
320 |
+
value: 0.6474431148702396
|
321 |
+
name: Cosine Map@100
|
322 |
+
---
|
323 |
+
|
324 |
+
# hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF
|
325 |
+
This model was converted to GGUF format from [`harheem/bge-m3-nvidia-ko-v1`](https://huggingface.co/harheem/bge-m3-nvidia-ko-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
326 |
+
Refer to the [original model card](https://huggingface.co/harheem/bge-m3-nvidia-ko-v1) for more details on the model.
|
327 |
+
|
328 |
+
## Use with llama.cpp
|
329 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
330 |
+
|
331 |
+
```bash
|
332 |
+
brew install llama.cpp
|
333 |
+
|
334 |
+
```
|
335 |
+
Invoke the llama.cpp server or the CLI.
|
336 |
+
|
337 |
+
### CLI:
|
338 |
+
```bash
|
339 |
+
llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
|
340 |
+
```
|
341 |
+
|
342 |
+
### Server:
|
343 |
+
```bash
|
344 |
+
llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
|
345 |
+
```
|
346 |
+
|
347 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
348 |
+
|
349 |
+
Step 1: Clone llama.cpp from GitHub.
|
350 |
+
```
|
351 |
+
git clone https://github.com/ggerganov/llama.cpp
|
352 |
+
```
|
353 |
+
|
354 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
355 |
+
```
|
356 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
357 |
+
```
|
358 |
+
|
359 |
+
Step 3: Run inference through the main binary.
|
360 |
+
```
|
361 |
+
./llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
|
362 |
+
```
|
363 |
+
or
|
364 |
+
```
|
365 |
+
./llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
|
366 |
+
```
|