hongkeon commited on
Commit
4d2a761
·
verified ·
1 Parent(s): 94211c9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +366 -0
README.md ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: harheem/bge-m3-nvidia-ko-v1
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - dataset_size:1K<n<10K
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ - llama-cpp
32
+ - gguf-my-repo
33
+ widget:
34
+ - source_sentence: 하이브리다이저란 무엇인가요?
35
+ sentences:
36
+ - 하이퍼바이저는 보안에서 어떤 역할을 합니까?
37
+ - 지난 몇 년간 CUDA 생태계는 어떻게 발전해 왔나요?
38
+ - 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
39
+ - source_sentence: 임시 구독의 용도는 무엇입니까?
40
+ sentences:
41
+ - 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
42
+ - CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
43
+ - CUDA 8이 해결하는 계산상의 과제에는 어떤 것이 있습니까?
44
+ - source_sentence: '''saxpy''는 무엇을 뜻하나요?'
45
+ sentences:
46
+ - CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
47
+ - Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
48
+ - 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
49
+ - source_sentence: USD/Hydra란 무엇인가요?
50
+ sentences:
51
+ - 쿠다란 무엇인가요?
52
+ - y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
53
+ - Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
54
+ - source_sentence: CUDAcast란 무엇인가요?
55
+ sentences:
56
+ - CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
57
+ - 이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?
58
+ - WSL 2에서 NVML의 목적은 무엇입니까?
59
+ model-index:
60
+ - name: BGE base Financial Matryoshka
61
+ results:
62
+ - task:
63
+ type: information-retrieval
64
+ name: Information Retrieval
65
+ dataset:
66
+ name: dim 768
67
+ type: dim_768
68
+ metrics:
69
+ - type: cosine_accuracy@1
70
+ value: 0.5443037974683544
71
+ name: Cosine Accuracy@1
72
+ - type: cosine_accuracy@3
73
+ value: 0.7749648382559775
74
+ name: Cosine Accuracy@3
75
+ - type: cosine_accuracy@5
76
+ value: 0.8523206751054853
77
+ name: Cosine Accuracy@5
78
+ - type: cosine_accuracy@10
79
+ value: 0.9409282700421941
80
+ name: Cosine Accuracy@10
81
+ - type: cosine_precision@1
82
+ value: 0.5443037974683544
83
+ name: Cosine Precision@1
84
+ - type: cosine_precision@3
85
+ value: 0.2583216127519925
86
+ name: Cosine Precision@3
87
+ - type: cosine_precision@5
88
+ value: 0.17046413502109703
89
+ name: Cosine Precision@5
90
+ - type: cosine_precision@10
91
+ value: 0.09409282700421939
92
+ name: Cosine Precision@10
93
+ - type: cosine_recall@1
94
+ value: 0.5443037974683544
95
+ name: Cosine Recall@1
96
+ - type: cosine_recall@3
97
+ value: 0.7749648382559775
98
+ name: Cosine Recall@3
99
+ - type: cosine_recall@5
100
+ value: 0.8523206751054853
101
+ name: Cosine Recall@5
102
+ - type: cosine_recall@10
103
+ value: 0.9409282700421941
104
+ name: Cosine Recall@10
105
+ - type: cosine_ndcg@10
106
+ value: 0.7411108924386547
107
+ name: Cosine Ndcg@10
108
+ - type: cosine_mrr@10
109
+ value: 0.677065054807671
110
+ name: Cosine Mrr@10
111
+ - type: cosine_map@100
112
+ value: 0.6802131506478553
113
+ name: Cosine Map@100
114
+ - task:
115
+ type: information-retrieval
116
+ name: Information Retrieval
117
+ dataset:
118
+ name: dim 512
119
+ type: dim_512
120
+ metrics:
121
+ - type: cosine_accuracy@1
122
+ value: 0.5386779184247539
123
+ name: Cosine Accuracy@1
124
+ - type: cosine_accuracy@3
125
+ value: 0.7749648382559775
126
+ name: Cosine Accuracy@3
127
+ - type: cosine_accuracy@5
128
+ value: 0.8593530239099859
129
+ name: Cosine Accuracy@5
130
+ - type: cosine_accuracy@10
131
+ value: 0.9451476793248945
132
+ name: Cosine Accuracy@10
133
+ - type: cosine_precision@1
134
+ value: 0.5386779184247539
135
+ name: Cosine Precision@1
136
+ - type: cosine_precision@3
137
+ value: 0.2583216127519925
138
+ name: Cosine Precision@3
139
+ - type: cosine_precision@5
140
+ value: 0.17187060478199717
141
+ name: Cosine Precision@5
142
+ - type: cosine_precision@10
143
+ value: 0.09451476793248943
144
+ name: Cosine Precision@10
145
+ - type: cosine_recall@1
146
+ value: 0.5386779184247539
147
+ name: Cosine Recall@1
148
+ - type: cosine_recall@3
149
+ value: 0.7749648382559775
150
+ name: Cosine Recall@3
151
+ - type: cosine_recall@5
152
+ value: 0.8593530239099859
153
+ name: Cosine Recall@5
154
+ - type: cosine_recall@10
155
+ value: 0.9451476793248945
156
+ name: Cosine Recall@10
157
+ - type: cosine_ndcg@10
158
+ value: 0.7413571133247474
159
+ name: Cosine Ndcg@10
160
+ - type: cosine_mrr@10
161
+ value: 0.6759917844306029
162
+ name: Cosine Mrr@10
163
+ - type: cosine_map@100
164
+ value: 0.678939165210132
165
+ name: Cosine Map@100
166
+ - task:
167
+ type: information-retrieval
168
+ name: Information Retrieval
169
+ dataset:
170
+ name: dim 256
171
+ type: dim_256
172
+ metrics:
173
+ - type: cosine_accuracy@1
174
+ value: 0.540084388185654
175
+ name: Cosine Accuracy@1
176
+ - type: cosine_accuracy@3
177
+ value: 0.7791842475386779
178
+ name: Cosine Accuracy@3
179
+ - type: cosine_accuracy@5
180
+ value: 0.8621659634317862
181
+ name: Cosine Accuracy@5
182
+ - type: cosine_accuracy@10
183
+ value: 0.9423347398030942
184
+ name: Cosine Accuracy@10
185
+ - type: cosine_precision@1
186
+ value: 0.540084388185654
187
+ name: Cosine Precision@1
188
+ - type: cosine_precision@3
189
+ value: 0.25972808251289264
190
+ name: Cosine Precision@3
191
+ - type: cosine_precision@5
192
+ value: 0.1724331926863572
193
+ name: Cosine Precision@5
194
+ - type: cosine_precision@10
195
+ value: 0.09423347398030943
196
+ name: Cosine Precision@10
197
+ - type: cosine_recall@1
198
+ value: 0.540084388185654
199
+ name: Cosine Recall@1
200
+ - type: cosine_recall@3
201
+ value: 0.7791842475386779
202
+ name: Cosine Recall@3
203
+ - type: cosine_recall@5
204
+ value: 0.8621659634317862
205
+ name: Cosine Recall@5
206
+ - type: cosine_recall@10
207
+ value: 0.9423347398030942
208
+ name: Cosine Recall@10
209
+ - type: cosine_ndcg@10
210
+ value: 0.7403981257690416
211
+ name: Cosine Ndcg@10
212
+ - type: cosine_mrr@10
213
+ value: 0.6756379344986938
214
+ name: Cosine Mrr@10
215
+ - type: cosine_map@100
216
+ value: 0.6787046866761269
217
+ name: Cosine Map@100
218
+ - task:
219
+ type: information-retrieval
220
+ name: Information Retrieval
221
+ dataset:
222
+ name: dim 128
223
+ type: dim_128
224
+ metrics:
225
+ - type: cosine_accuracy@1
226
+ value: 0.5218002812939522
227
+ name: Cosine Accuracy@1
228
+ - type: cosine_accuracy@3
229
+ value: 0.7679324894514767
230
+ name: Cosine Accuracy@3
231
+ - type: cosine_accuracy@5
232
+ value: 0.8635724331926864
233
+ name: Cosine Accuracy@5
234
+ - type: cosine_accuracy@10
235
+ value: 0.9367088607594937
236
+ name: Cosine Accuracy@10
237
+ - type: cosine_precision@1
238
+ value: 0.5218002812939522
239
+ name: Cosine Precision@1
240
+ - type: cosine_precision@3
241
+ value: 0.2559774964838256
242
+ name: Cosine Precision@3
243
+ - type: cosine_precision@5
244
+ value: 0.17271448663853725
245
+ name: Cosine Precision@5
246
+ - type: cosine_precision@10
247
+ value: 0.09367088607594935
248
+ name: Cosine Precision@10
249
+ - type: cosine_recall@1
250
+ value: 0.5218002812939522
251
+ name: Cosine Recall@1
252
+ - type: cosine_recall@3
253
+ value: 0.7679324894514767
254
+ name: Cosine Recall@3
255
+ - type: cosine_recall@5
256
+ value: 0.8635724331926864
257
+ name: Cosine Recall@5
258
+ - type: cosine_recall@10
259
+ value: 0.9367088607594937
260
+ name: Cosine Recall@10
261
+ - type: cosine_ndcg@10
262
+ value: 0.7305864977688176
263
+ name: Cosine Ndcg@10
264
+ - type: cosine_mrr@10
265
+ value: 0.6641673922264634
266
+ name: Cosine Mrr@10
267
+ - type: cosine_map@100
268
+ value: 0.6671648971944116
269
+ name: Cosine Map@100
270
+ - task:
271
+ type: information-retrieval
272
+ name: Information Retrieval
273
+ dataset:
274
+ name: dim 64
275
+ type: dim_64
276
+ metrics:
277
+ - type: cosine_accuracy@1
278
+ value: 0.509142053445851
279
+ name: Cosine Accuracy@1
280
+ - type: cosine_accuracy@3
281
+ value: 0.7426160337552743
282
+ name: Cosine Accuracy@3
283
+ - type: cosine_accuracy@5
284
+ value: 0.8284106891701828
285
+ name: Cosine Accuracy@5
286
+ - type: cosine_accuracy@10
287
+ value: 0.9310829817158931
288
+ name: Cosine Accuracy@10
289
+ - type: cosine_precision@1
290
+ value: 0.509142053445851
291
+ name: Cosine Precision@1
292
+ - type: cosine_precision@3
293
+ value: 0.24753867791842477
294
+ name: Cosine Precision@3
295
+ - type: cosine_precision@5
296
+ value: 0.16568213783403654
297
+ name: Cosine Precision@5
298
+ - type: cosine_precision@10
299
+ value: 0.09310829817158929
300
+ name: Cosine Precision@10
301
+ - type: cosine_recall@1
302
+ value: 0.509142053445851
303
+ name: Cosine Recall@1
304
+ - type: cosine_recall@3
305
+ value: 0.7426160337552743
306
+ name: Cosine Recall@3
307
+ - type: cosine_recall@5
308
+ value: 0.8284106891701828
309
+ name: Cosine Recall@5
310
+ - type: cosine_recall@10
311
+ value: 0.9310829817158931
312
+ name: Cosine Recall@10
313
+ - type: cosine_ndcg@10
314
+ value: 0.7135661304090457
315
+ name: Cosine Ndcg@10
316
+ - type: cosine_mrr@10
317
+ value: 0.6444829549259928
318
+ name: Cosine Mrr@10
319
+ - type: cosine_map@100
320
+ value: 0.6474431148702396
321
+ name: Cosine Map@100
322
+ ---
323
+
324
+ # hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF
325
+ This model was converted to GGUF format from [`harheem/bge-m3-nvidia-ko-v1`](https://huggingface.co/harheem/bge-m3-nvidia-ko-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
326
+ Refer to the [original model card](https://huggingface.co/harheem/bge-m3-nvidia-ko-v1) for more details on the model.
327
+
328
+ ## Use with llama.cpp
329
+ Install llama.cpp through brew (works on Mac and Linux)
330
+
331
+ ```bash
332
+ brew install llama.cpp
333
+
334
+ ```
335
+ Invoke the llama.cpp server or the CLI.
336
+
337
+ ### CLI:
338
+ ```bash
339
+ llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
340
+ ```
341
+
342
+ ### Server:
343
+ ```bash
344
+ llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
345
+ ```
346
+
347
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
348
+
349
+ Step 1: Clone llama.cpp from GitHub.
350
+ ```
351
+ git clone https://github.com/ggerganov/llama.cpp
352
+ ```
353
+
354
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
355
+ ```
356
+ cd llama.cpp && LLAMA_CURL=1 make
357
+ ```
358
+
359
+ Step 3: Run inference through the main binary.
360
+ ```
361
+ ./llama-cli --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
362
+ ```
363
+ or
364
+ ```
365
+ ./llama-server --hf-repo hongkeon/bge-m3-nvidia-ko-v1-Q4_K_M-GGUF --hf-file bge-m3-nvidia-ko-v1-q4_k_m.gguf -c 2048
366
+ ```