Hoang Pham commited on
Commit
57de62b
·
verified ·
1 Parent(s): 659bb0f

End of training

Browse files
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - wnut_17
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: my_awesome_wnut_model
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: wnut_17
22
+ type: wnut_17
23
+ config: wnut_17
24
+ split: test
25
+ args: wnut_17
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.41995841995842
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.1872103799814643
33
+ - name: F1
34
+ type: f1
35
+ value: 0.258974358974359
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9353170022658287
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # my_awesome_wnut_model
45
+
46
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.2996
49
+ - Precision: 0.4200
50
+ - Recall: 0.1872
51
+ - F1: 0.2590
52
+ - Accuracy: 0.9353
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 32
73
+ - eval_batch_size: 32
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 2
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 107 | 0.3145 | 0.3212 | 0.0491 | 0.0852 | 0.9296 |
84
+ | No log | 2.0 | 214 | 0.2996 | 0.4200 | 0.1872 | 0.2590 | 0.9353 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.44.2
90
+ - Pytorch 2.4.1+cu121
91
+ - Datasets 3.2.0
92
+ - Tokenizers 0.19.1
runs/Dec22_07-47-38_0c07bf4a9517/events.out.tfevents.1734853660.0c07bf4a9517.4490.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6295c35813e1d37e18a5f651c699a4c6c55c196c398e6deeb715446492c575ca
3
- size 5894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf53bc70e525949e152612f7ddb271135b5b04953726951e9bdcf87c3e10fcb1
3
+ size 6720