multi-train commited on
Commit
7269a36
1 Parent(s): ba64f27

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2496 -0
README.md CHANGED
@@ -25,6 +25,2502 @@ tags:
25
  - text-evaluation
26
  - prompt-retrieval
27
  - text-reranking
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ---
29
 
30
  # hkunlp/instructor-large
 
25
  - text-evaluation
26
  - prompt-retrieval
27
  - text-reranking
28
+ - mteb
29
+ model-index:
30
+ - name: replicate-1227-large-full
31
+ results:
32
+ - task:
33
+ type: Classification
34
+ dataset:
35
+ type: mteb/amazon_counterfactual
36
+ name: MTEB AmazonCounterfactualClassification (en)
37
+ config: en
38
+ split: test
39
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
40
+ metrics:
41
+ - type: accuracy
42
+ value: 88.13432835820896
43
+ - type: ap
44
+ value: 59.298209334395665
45
+ - type: f1
46
+ value: 83.31769058643586
47
+ - task:
48
+ type: Classification
49
+ dataset:
50
+ type: mteb/amazon_polarity
51
+ name: MTEB AmazonPolarityClassification
52
+ config: default
53
+ split: test
54
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
55
+ metrics:
56
+ - type: accuracy
57
+ value: 91.526375
58
+ - type: ap
59
+ value: 88.16327709705504
60
+ - type: f1
61
+ value: 91.51095801287843
62
+ - task:
63
+ type: Classification
64
+ dataset:
65
+ type: mteb/amazon_reviews_multi
66
+ name: MTEB AmazonReviewsClassification (en)
67
+ config: en
68
+ split: test
69
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
70
+ metrics:
71
+ - type: accuracy
72
+ value: 47.856
73
+ - type: f1
74
+ value: 45.41490917650942
75
+ - task:
76
+ type: Retrieval
77
+ dataset:
78
+ type: arguana
79
+ name: MTEB ArguAna
80
+ config: default
81
+ split: test
82
+ revision: None
83
+ metrics:
84
+ - type: map_at_1
85
+ value: 31.223
86
+ - type: map_at_10
87
+ value: 47.947
88
+ - type: map_at_100
89
+ value: 48.742000000000004
90
+ - type: map_at_1000
91
+ value: 48.745
92
+ - type: map_at_3
93
+ value: 43.137
94
+ - type: map_at_5
95
+ value: 45.992
96
+ - type: mrr_at_1
97
+ value: 32.432
98
+ - type: mrr_at_10
99
+ value: 48.4
100
+ - type: mrr_at_100
101
+ value: 49.202
102
+ - type: mrr_at_1000
103
+ value: 49.205
104
+ - type: mrr_at_3
105
+ value: 43.551
106
+ - type: mrr_at_5
107
+ value: 46.467999999999996
108
+ - type: ndcg_at_1
109
+ value: 31.223
110
+ - type: ndcg_at_10
111
+ value: 57.045
112
+ - type: ndcg_at_100
113
+ value: 60.175
114
+ - type: ndcg_at_1000
115
+ value: 60.233000000000004
116
+ - type: ndcg_at_3
117
+ value: 47.171
118
+ - type: ndcg_at_5
119
+ value: 52.322
120
+ - type: precision_at_1
121
+ value: 31.223
122
+ - type: precision_at_10
123
+ value: 8.599
124
+ - type: precision_at_100
125
+ value: 0.991
126
+ - type: precision_at_1000
127
+ value: 0.1
128
+ - type: precision_at_3
129
+ value: 19.63
130
+ - type: precision_at_5
131
+ value: 14.282
132
+ - type: recall_at_1
133
+ value: 31.223
134
+ - type: recall_at_10
135
+ value: 85.989
136
+ - type: recall_at_100
137
+ value: 99.075
138
+ - type: recall_at_1000
139
+ value: 99.502
140
+ - type: recall_at_3
141
+ value: 58.89
142
+ - type: recall_at_5
143
+ value: 71.408
144
+ - task:
145
+ type: Clustering
146
+ dataset:
147
+ type: mteb/arxiv-clustering-p2p
148
+ name: MTEB ArxivClusteringP2P
149
+ config: default
150
+ split: test
151
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
152
+ metrics:
153
+ - type: v_measure
154
+ value: 43.1621946393635
155
+ - task:
156
+ type: Clustering
157
+ dataset:
158
+ type: mteb/arxiv-clustering-s2s
159
+ name: MTEB ArxivClusteringS2S
160
+ config: default
161
+ split: test
162
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
163
+ metrics:
164
+ - type: v_measure
165
+ value: 32.56417132407894
166
+ - task:
167
+ type: Reranking
168
+ dataset:
169
+ type: mteb/askubuntudupquestions-reranking
170
+ name: MTEB AskUbuntuDupQuestions
171
+ config: default
172
+ split: test
173
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
174
+ metrics:
175
+ - type: map
176
+ value: 64.29539304390207
177
+ - type: mrr
178
+ value: 76.44484017060196
179
+ - task:
180
+ type: STS
181
+ dataset:
182
+ type: mteb/biosses-sts
183
+ name: MTEB BIOSSES
184
+ config: default
185
+ split: test
186
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
187
+ metrics:
188
+ - type: cos_sim_spearman
189
+ value: 84.38746499431112
190
+ - task:
191
+ type: Classification
192
+ dataset:
193
+ type: mteb/banking77
194
+ name: MTEB Banking77Classification
195
+ config: default
196
+ split: test
197
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
198
+ metrics:
199
+ - type: accuracy
200
+ value: 78.51298701298701
201
+ - type: f1
202
+ value: 77.49041754069235
203
+ - task:
204
+ type: Clustering
205
+ dataset:
206
+ type: mteb/biorxiv-clustering-p2p
207
+ name: MTEB BiorxivClusteringP2P
208
+ config: default
209
+ split: test
210
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
211
+ metrics:
212
+ - type: v_measure
213
+ value: 37.61848554098577
214
+ - task:
215
+ type: Clustering
216
+ dataset:
217
+ type: mteb/biorxiv-clustering-s2s
218
+ name: MTEB BiorxivClusteringS2S
219
+ config: default
220
+ split: test
221
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
222
+ metrics:
223
+ - type: v_measure
224
+ value: 31.32623280148178
225
+ - task:
226
+ type: Retrieval
227
+ dataset:
228
+ type: BeIR/cqadupstack
229
+ name: MTEB CQADupstackAndroidRetrieval
230
+ config: default
231
+ split: test
232
+ revision: None
233
+ metrics:
234
+ - type: map_at_1
235
+ value: 35.803000000000004
236
+ - type: map_at_10
237
+ value: 48.848
238
+ - type: map_at_100
239
+ value: 50.5
240
+ - type: map_at_1000
241
+ value: 50.602999999999994
242
+ - type: map_at_3
243
+ value: 45.111000000000004
244
+ - type: map_at_5
245
+ value: 47.202
246
+ - type: mrr_at_1
247
+ value: 44.635000000000005
248
+ - type: mrr_at_10
249
+ value: 55.593
250
+ - type: mrr_at_100
251
+ value: 56.169999999999995
252
+ - type: mrr_at_1000
253
+ value: 56.19499999999999
254
+ - type: mrr_at_3
255
+ value: 53.361999999999995
256
+ - type: mrr_at_5
257
+ value: 54.806999999999995
258
+ - type: ndcg_at_1
259
+ value: 44.635000000000005
260
+ - type: ndcg_at_10
261
+ value: 55.899
262
+ - type: ndcg_at_100
263
+ value: 60.958
264
+ - type: ndcg_at_1000
265
+ value: 62.302
266
+ - type: ndcg_at_3
267
+ value: 51.051
268
+ - type: ndcg_at_5
269
+ value: 53.351000000000006
270
+ - type: precision_at_1
271
+ value: 44.635000000000005
272
+ - type: precision_at_10
273
+ value: 10.786999999999999
274
+ - type: precision_at_100
275
+ value: 1.6580000000000001
276
+ - type: precision_at_1000
277
+ value: 0.213
278
+ - type: precision_at_3
279
+ value: 24.893
280
+ - type: precision_at_5
281
+ value: 17.740000000000002
282
+ - type: recall_at_1
283
+ value: 35.803000000000004
284
+ - type: recall_at_10
285
+ value: 68.657
286
+ - type: recall_at_100
287
+ value: 89.77199999999999
288
+ - type: recall_at_1000
289
+ value: 97.67
290
+ - type: recall_at_3
291
+ value: 54.066
292
+ - type: recall_at_5
293
+ value: 60.788
294
+ - task:
295
+ type: Retrieval
296
+ dataset:
297
+ type: BeIR/cqadupstack
298
+ name: MTEB CQADupstackEnglishRetrieval
299
+ config: default
300
+ split: test
301
+ revision: None
302
+ metrics:
303
+ - type: map_at_1
304
+ value: 33.706
305
+ - type: map_at_10
306
+ value: 44.896
307
+ - type: map_at_100
308
+ value: 46.299
309
+ - type: map_at_1000
310
+ value: 46.44
311
+ - type: map_at_3
312
+ value: 41.721000000000004
313
+ - type: map_at_5
314
+ value: 43.486000000000004
315
+ - type: mrr_at_1
316
+ value: 41.592
317
+ - type: mrr_at_10
318
+ value: 50.529
319
+ - type: mrr_at_100
320
+ value: 51.22
321
+ - type: mrr_at_1000
322
+ value: 51.258
323
+ - type: mrr_at_3
324
+ value: 48.205999999999996
325
+ - type: mrr_at_5
326
+ value: 49.528
327
+ - type: ndcg_at_1
328
+ value: 41.592
329
+ - type: ndcg_at_10
330
+ value: 50.77199999999999
331
+ - type: ndcg_at_100
332
+ value: 55.383
333
+ - type: ndcg_at_1000
334
+ value: 57.288
335
+ - type: ndcg_at_3
336
+ value: 46.324
337
+ - type: ndcg_at_5
338
+ value: 48.346000000000004
339
+ - type: precision_at_1
340
+ value: 41.592
341
+ - type: precision_at_10
342
+ value: 9.516
343
+ - type: precision_at_100
344
+ value: 1.541
345
+ - type: precision_at_1000
346
+ value: 0.2
347
+ - type: precision_at_3
348
+ value: 22.399
349
+ - type: precision_at_5
350
+ value: 15.770999999999999
351
+ - type: recall_at_1
352
+ value: 33.706
353
+ - type: recall_at_10
354
+ value: 61.353
355
+ - type: recall_at_100
356
+ value: 80.182
357
+ - type: recall_at_1000
358
+ value: 91.896
359
+ - type: recall_at_3
360
+ value: 48.204
361
+ - type: recall_at_5
362
+ value: 53.89699999999999
363
+ - task:
364
+ type: Retrieval
365
+ dataset:
366
+ type: BeIR/cqadupstack
367
+ name: MTEB CQADupstackGamingRetrieval
368
+ config: default
369
+ split: test
370
+ revision: None
371
+ metrics:
372
+ - type: map_at_1
373
+ value: 44.424
374
+ - type: map_at_10
375
+ value: 57.169000000000004
376
+ - type: map_at_100
377
+ value: 58.202
378
+ - type: map_at_1000
379
+ value: 58.242000000000004
380
+ - type: map_at_3
381
+ value: 53.825
382
+ - type: map_at_5
383
+ value: 55.714
384
+ - type: mrr_at_1
385
+ value: 50.470000000000006
386
+ - type: mrr_at_10
387
+ value: 60.489000000000004
388
+ - type: mrr_at_100
389
+ value: 61.096
390
+ - type: mrr_at_1000
391
+ value: 61.112
392
+ - type: mrr_at_3
393
+ value: 58.192
394
+ - type: mrr_at_5
395
+ value: 59.611999999999995
396
+ - type: ndcg_at_1
397
+ value: 50.470000000000006
398
+ - type: ndcg_at_10
399
+ value: 63.071999999999996
400
+ - type: ndcg_at_100
401
+ value: 66.964
402
+ - type: ndcg_at_1000
403
+ value: 67.659
404
+ - type: ndcg_at_3
405
+ value: 57.74399999999999
406
+ - type: ndcg_at_5
407
+ value: 60.367000000000004
408
+ - type: precision_at_1
409
+ value: 50.470000000000006
410
+ - type: precision_at_10
411
+ value: 10.019
412
+ - type: precision_at_100
413
+ value: 1.29
414
+ - type: precision_at_1000
415
+ value: 0.13899999999999998
416
+ - type: precision_at_3
417
+ value: 25.558999999999997
418
+ - type: precision_at_5
419
+ value: 17.467
420
+ - type: recall_at_1
421
+ value: 44.424
422
+ - type: recall_at_10
423
+ value: 77.02
424
+ - type: recall_at_100
425
+ value: 93.738
426
+ - type: recall_at_1000
427
+ value: 98.451
428
+ - type: recall_at_3
429
+ value: 62.888
430
+ - type: recall_at_5
431
+ value: 69.138
432
+ - task:
433
+ type: Retrieval
434
+ dataset:
435
+ type: BeIR/cqadupstack
436
+ name: MTEB CQADupstackGisRetrieval
437
+ config: default
438
+ split: test
439
+ revision: None
440
+ metrics:
441
+ - type: map_at_1
442
+ value: 26.294
443
+ - type: map_at_10
444
+ value: 34.503
445
+ - type: map_at_100
446
+ value: 35.641
447
+ - type: map_at_1000
448
+ value: 35.724000000000004
449
+ - type: map_at_3
450
+ value: 31.753999999999998
451
+ - type: map_at_5
452
+ value: 33.190999999999995
453
+ - type: mrr_at_1
454
+ value: 28.362
455
+ - type: mrr_at_10
456
+ value: 36.53
457
+ - type: mrr_at_100
458
+ value: 37.541000000000004
459
+ - type: mrr_at_1000
460
+ value: 37.602000000000004
461
+ - type: mrr_at_3
462
+ value: 33.917
463
+ - type: mrr_at_5
464
+ value: 35.358000000000004
465
+ - type: ndcg_at_1
466
+ value: 28.362
467
+ - type: ndcg_at_10
468
+ value: 39.513999999999996
469
+ - type: ndcg_at_100
470
+ value: 44.815
471
+ - type: ndcg_at_1000
472
+ value: 46.839
473
+ - type: ndcg_at_3
474
+ value: 34.02
475
+ - type: ndcg_at_5
476
+ value: 36.522
477
+ - type: precision_at_1
478
+ value: 28.362
479
+ - type: precision_at_10
480
+ value: 6.101999999999999
481
+ - type: precision_at_100
482
+ value: 0.9129999999999999
483
+ - type: precision_at_1000
484
+ value: 0.11399999999999999
485
+ - type: precision_at_3
486
+ value: 14.161999999999999
487
+ - type: precision_at_5
488
+ value: 9.966
489
+ - type: recall_at_1
490
+ value: 26.294
491
+ - type: recall_at_10
492
+ value: 53.098
493
+ - type: recall_at_100
494
+ value: 76.877
495
+ - type: recall_at_1000
496
+ value: 91.834
497
+ - type: recall_at_3
498
+ value: 38.266
499
+ - type: recall_at_5
500
+ value: 44.287
501
+ - task:
502
+ type: Retrieval
503
+ dataset:
504
+ type: BeIR/cqadupstack
505
+ name: MTEB CQADupstackMathematicaRetrieval
506
+ config: default
507
+ split: test
508
+ revision: None
509
+ metrics:
510
+ - type: map_at_1
511
+ value: 16.407
512
+ - type: map_at_10
513
+ value: 25.185999999999996
514
+ - type: map_at_100
515
+ value: 26.533
516
+ - type: map_at_1000
517
+ value: 26.657999999999998
518
+ - type: map_at_3
519
+ value: 22.201999999999998
520
+ - type: map_at_5
521
+ value: 23.923
522
+ - type: mrr_at_1
523
+ value: 20.522000000000002
524
+ - type: mrr_at_10
525
+ value: 29.522
526
+ - type: mrr_at_100
527
+ value: 30.644
528
+ - type: mrr_at_1000
529
+ value: 30.713
530
+ - type: mrr_at_3
531
+ value: 26.679000000000002
532
+ - type: mrr_at_5
533
+ value: 28.483000000000004
534
+ - type: ndcg_at_1
535
+ value: 20.522000000000002
536
+ - type: ndcg_at_10
537
+ value: 30.656
538
+ - type: ndcg_at_100
539
+ value: 36.864999999999995
540
+ - type: ndcg_at_1000
541
+ value: 39.675
542
+ - type: ndcg_at_3
543
+ value: 25.319000000000003
544
+ - type: ndcg_at_5
545
+ value: 27.992
546
+ - type: precision_at_1
547
+ value: 20.522000000000002
548
+ - type: precision_at_10
549
+ value: 5.795999999999999
550
+ - type: precision_at_100
551
+ value: 1.027
552
+ - type: precision_at_1000
553
+ value: 0.13999999999999999
554
+ - type: precision_at_3
555
+ value: 12.396
556
+ - type: precision_at_5
557
+ value: 9.328
558
+ - type: recall_at_1
559
+ value: 16.407
560
+ - type: recall_at_10
561
+ value: 43.164
562
+ - type: recall_at_100
563
+ value: 69.695
564
+ - type: recall_at_1000
565
+ value: 89.41900000000001
566
+ - type: recall_at_3
567
+ value: 28.634999999999998
568
+ - type: recall_at_5
569
+ value: 35.308
570
+ - task:
571
+ type: Retrieval
572
+ dataset:
573
+ type: BeIR/cqadupstack
574
+ name: MTEB CQADupstackPhysicsRetrieval
575
+ config: default
576
+ split: test
577
+ revision: None
578
+ metrics:
579
+ - type: map_at_1
580
+ value: 30.473
581
+ - type: map_at_10
582
+ value: 41.676
583
+ - type: map_at_100
584
+ value: 43.120999999999995
585
+ - type: map_at_1000
586
+ value: 43.230000000000004
587
+ - type: map_at_3
588
+ value: 38.306000000000004
589
+ - type: map_at_5
590
+ value: 40.355999999999995
591
+ - type: mrr_at_1
592
+ value: 37.536
593
+ - type: mrr_at_10
594
+ value: 47.643
595
+ - type: mrr_at_100
596
+ value: 48.508
597
+ - type: mrr_at_1000
598
+ value: 48.551
599
+ - type: mrr_at_3
600
+ value: 45.348
601
+ - type: mrr_at_5
602
+ value: 46.744
603
+ - type: ndcg_at_1
604
+ value: 37.536
605
+ - type: ndcg_at_10
606
+ value: 47.823
607
+ - type: ndcg_at_100
608
+ value: 53.395
609
+ - type: ndcg_at_1000
610
+ value: 55.271
611
+ - type: ndcg_at_3
612
+ value: 42.768
613
+ - type: ndcg_at_5
614
+ value: 45.373000000000005
615
+ - type: precision_at_1
616
+ value: 37.536
617
+ - type: precision_at_10
618
+ value: 8.681
619
+ - type: precision_at_100
620
+ value: 1.34
621
+ - type: precision_at_1000
622
+ value: 0.165
623
+ - type: precision_at_3
624
+ value: 20.468
625
+ - type: precision_at_5
626
+ value: 14.495
627
+ - type: recall_at_1
628
+ value: 30.473
629
+ - type: recall_at_10
630
+ value: 60.092999999999996
631
+ - type: recall_at_100
632
+ value: 82.733
633
+ - type: recall_at_1000
634
+ value: 94.875
635
+ - type: recall_at_3
636
+ value: 45.734
637
+ - type: recall_at_5
638
+ value: 52.691
639
+ - task:
640
+ type: Retrieval
641
+ dataset:
642
+ type: BeIR/cqadupstack
643
+ name: MTEB CQADupstackProgrammersRetrieval
644
+ config: default
645
+ split: test
646
+ revision: None
647
+ metrics:
648
+ - type: map_at_1
649
+ value: 29.976000000000003
650
+ - type: map_at_10
651
+ value: 41.097
652
+ - type: map_at_100
653
+ value: 42.547000000000004
654
+ - type: map_at_1000
655
+ value: 42.659000000000006
656
+ - type: map_at_3
657
+ value: 37.251
658
+ - type: map_at_5
659
+ value: 39.493
660
+ - type: mrr_at_1
661
+ value: 37.557
662
+ - type: mrr_at_10
663
+ value: 46.605000000000004
664
+ - type: mrr_at_100
665
+ value: 47.487
666
+ - type: mrr_at_1000
667
+ value: 47.54
668
+ - type: mrr_at_3
669
+ value: 43.721
670
+ - type: mrr_at_5
671
+ value: 45.411
672
+ - type: ndcg_at_1
673
+ value: 37.557
674
+ - type: ndcg_at_10
675
+ value: 47.449000000000005
676
+ - type: ndcg_at_100
677
+ value: 53.052
678
+ - type: ndcg_at_1000
679
+ value: 55.010999999999996
680
+ - type: ndcg_at_3
681
+ value: 41.439
682
+ - type: ndcg_at_5
683
+ value: 44.292
684
+ - type: precision_at_1
685
+ value: 37.557
686
+ - type: precision_at_10
687
+ value: 8.847
688
+ - type: precision_at_100
689
+ value: 1.357
690
+ - type: precision_at_1000
691
+ value: 0.16999999999999998
692
+ - type: precision_at_3
693
+ value: 20.091
694
+ - type: precision_at_5
695
+ value: 14.384
696
+ - type: recall_at_1
697
+ value: 29.976000000000003
698
+ - type: recall_at_10
699
+ value: 60.99099999999999
700
+ - type: recall_at_100
701
+ value: 84.245
702
+ - type: recall_at_1000
703
+ value: 96.97200000000001
704
+ - type: recall_at_3
705
+ value: 43.794
706
+ - type: recall_at_5
707
+ value: 51.778999999999996
708
+ - task:
709
+ type: Retrieval
710
+ dataset:
711
+ type: BeIR/cqadupstack
712
+ name: MTEB CQADupstackRetrieval
713
+ config: default
714
+ split: test
715
+ revision: None
716
+ metrics:
717
+ - type: map_at_1
718
+ value: 28.099166666666665
719
+ - type: map_at_10
720
+ value: 38.1365
721
+ - type: map_at_100
722
+ value: 39.44491666666667
723
+ - type: map_at_1000
724
+ value: 39.55858333333334
725
+ - type: map_at_3
726
+ value: 35.03641666666666
727
+ - type: map_at_5
728
+ value: 36.79833333333334
729
+ - type: mrr_at_1
730
+ value: 33.39966666666667
731
+ - type: mrr_at_10
732
+ value: 42.42583333333333
733
+ - type: mrr_at_100
734
+ value: 43.28575
735
+ - type: mrr_at_1000
736
+ value: 43.33741666666667
737
+ - type: mrr_at_3
738
+ value: 39.94975
739
+ - type: mrr_at_5
740
+ value: 41.41633333333334
741
+ - type: ndcg_at_1
742
+ value: 33.39966666666667
743
+ - type: ndcg_at_10
744
+ value: 43.81741666666667
745
+ - type: ndcg_at_100
746
+ value: 49.08166666666667
747
+ - type: ndcg_at_1000
748
+ value: 51.121166666666674
749
+ - type: ndcg_at_3
750
+ value: 38.73575
751
+ - type: ndcg_at_5
752
+ value: 41.18158333333333
753
+ - type: precision_at_1
754
+ value: 33.39966666666667
755
+ - type: precision_at_10
756
+ value: 7.738916666666667
757
+ - type: precision_at_100
758
+ value: 1.2265833333333331
759
+ - type: precision_at_1000
760
+ value: 0.15983333333333336
761
+ - type: precision_at_3
762
+ value: 17.967416666666665
763
+ - type: precision_at_5
764
+ value: 12.78675
765
+ - type: recall_at_1
766
+ value: 28.099166666666665
767
+ - type: recall_at_10
768
+ value: 56.27049999999999
769
+ - type: recall_at_100
770
+ value: 78.93291666666667
771
+ - type: recall_at_1000
772
+ value: 92.81608333333334
773
+ - type: recall_at_3
774
+ value: 42.09775
775
+ - type: recall_at_5
776
+ value: 48.42533333333334
777
+ - task:
778
+ type: Retrieval
779
+ dataset:
780
+ type: BeIR/cqadupstack
781
+ name: MTEB CQADupstackStatsRetrieval
782
+ config: default
783
+ split: test
784
+ revision: None
785
+ metrics:
786
+ - type: map_at_1
787
+ value: 23.663
788
+ - type: map_at_10
789
+ value: 30.377
790
+ - type: map_at_100
791
+ value: 31.426
792
+ - type: map_at_1000
793
+ value: 31.519000000000002
794
+ - type: map_at_3
795
+ value: 28.069
796
+ - type: map_at_5
797
+ value: 29.256999999999998
798
+ - type: mrr_at_1
799
+ value: 26.687
800
+ - type: mrr_at_10
801
+ value: 33.107
802
+ - type: mrr_at_100
803
+ value: 34.055
804
+ - type: mrr_at_1000
805
+ value: 34.117999999999995
806
+ - type: mrr_at_3
807
+ value: 31.058000000000003
808
+ - type: mrr_at_5
809
+ value: 32.14
810
+ - type: ndcg_at_1
811
+ value: 26.687
812
+ - type: ndcg_at_10
813
+ value: 34.615
814
+ - type: ndcg_at_100
815
+ value: 39.776
816
+ - type: ndcg_at_1000
817
+ value: 42.05
818
+ - type: ndcg_at_3
819
+ value: 30.322
820
+ - type: ndcg_at_5
821
+ value: 32.157000000000004
822
+ - type: precision_at_1
823
+ value: 26.687
824
+ - type: precision_at_10
825
+ value: 5.491
826
+ - type: precision_at_100
827
+ value: 0.877
828
+ - type: precision_at_1000
829
+ value: 0.11499999999999999
830
+ - type: precision_at_3
831
+ value: 13.139000000000001
832
+ - type: precision_at_5
833
+ value: 9.049
834
+ - type: recall_at_1
835
+ value: 23.663
836
+ - type: recall_at_10
837
+ value: 45.035
838
+ - type: recall_at_100
839
+ value: 68.554
840
+ - type: recall_at_1000
841
+ value: 85.077
842
+ - type: recall_at_3
843
+ value: 32.982
844
+ - type: recall_at_5
845
+ value: 37.688
846
+ - task:
847
+ type: Retrieval
848
+ dataset:
849
+ type: BeIR/cqadupstack
850
+ name: MTEB CQADupstackTexRetrieval
851
+ config: default
852
+ split: test
853
+ revision: None
854
+ metrics:
855
+ - type: map_at_1
856
+ value: 17.403
857
+ - type: map_at_10
858
+ value: 25.197000000000003
859
+ - type: map_at_100
860
+ value: 26.355
861
+ - type: map_at_1000
862
+ value: 26.487
863
+ - type: map_at_3
864
+ value: 22.733
865
+ - type: map_at_5
866
+ value: 24.114
867
+ - type: mrr_at_1
868
+ value: 21.37
869
+ - type: mrr_at_10
870
+ value: 29.091
871
+ - type: mrr_at_100
872
+ value: 30.018
873
+ - type: mrr_at_1000
874
+ value: 30.096
875
+ - type: mrr_at_3
876
+ value: 26.887
877
+ - type: mrr_at_5
878
+ value: 28.157
879
+ - type: ndcg_at_1
880
+ value: 21.37
881
+ - type: ndcg_at_10
882
+ value: 30.026000000000003
883
+ - type: ndcg_at_100
884
+ value: 35.416
885
+ - type: ndcg_at_1000
886
+ value: 38.45
887
+ - type: ndcg_at_3
888
+ value: 25.764
889
+ - type: ndcg_at_5
890
+ value: 27.742
891
+ - type: precision_at_1
892
+ value: 21.37
893
+ - type: precision_at_10
894
+ value: 5.609
895
+ - type: precision_at_100
896
+ value: 0.9860000000000001
897
+ - type: precision_at_1000
898
+ value: 0.14300000000000002
899
+ - type: precision_at_3
900
+ value: 12.423
901
+ - type: precision_at_5
902
+ value: 9.009
903
+ - type: recall_at_1
904
+ value: 17.403
905
+ - type: recall_at_10
906
+ value: 40.573
907
+ - type: recall_at_100
908
+ value: 64.818
909
+ - type: recall_at_1000
910
+ value: 86.53699999999999
911
+ - type: recall_at_3
912
+ value: 28.493000000000002
913
+ - type: recall_at_5
914
+ value: 33.660000000000004
915
+ - task:
916
+ type: Retrieval
917
+ dataset:
918
+ type: BeIR/cqadupstack
919
+ name: MTEB CQADupstackUnixRetrieval
920
+ config: default
921
+ split: test
922
+ revision: None
923
+ metrics:
924
+ - type: map_at_1
925
+ value: 28.639
926
+ - type: map_at_10
927
+ value: 38.951
928
+ - type: map_at_100
929
+ value: 40.238
930
+ - type: map_at_1000
931
+ value: 40.327
932
+ - type: map_at_3
933
+ value: 35.842
934
+ - type: map_at_5
935
+ value: 37.617
936
+ - type: mrr_at_1
937
+ value: 33.769
938
+ - type: mrr_at_10
939
+ value: 43.088
940
+ - type: mrr_at_100
941
+ value: 44.03
942
+ - type: mrr_at_1000
943
+ value: 44.072
944
+ - type: mrr_at_3
945
+ value: 40.656
946
+ - type: mrr_at_5
947
+ value: 42.138999999999996
948
+ - type: ndcg_at_1
949
+ value: 33.769
950
+ - type: ndcg_at_10
951
+ value: 44.676
952
+ - type: ndcg_at_100
953
+ value: 50.416000000000004
954
+ - type: ndcg_at_1000
955
+ value: 52.227999999999994
956
+ - type: ndcg_at_3
957
+ value: 39.494
958
+ - type: ndcg_at_5
959
+ value: 42.013
960
+ - type: precision_at_1
961
+ value: 33.769
962
+ - type: precision_at_10
963
+ value: 7.668
964
+ - type: precision_at_100
965
+ value: 1.18
966
+ - type: precision_at_1000
967
+ value: 0.145
968
+ - type: precision_at_3
969
+ value: 18.221
970
+ - type: precision_at_5
971
+ value: 12.966
972
+ - type: recall_at_1
973
+ value: 28.639
974
+ - type: recall_at_10
975
+ value: 57.687999999999995
976
+ - type: recall_at_100
977
+ value: 82.541
978
+ - type: recall_at_1000
979
+ value: 94.896
980
+ - type: recall_at_3
981
+ value: 43.651
982
+ - type: recall_at_5
983
+ value: 49.925999999999995
984
+ - task:
985
+ type: Retrieval
986
+ dataset:
987
+ type: BeIR/cqadupstack
988
+ name: MTEB CQADupstackWebmastersRetrieval
989
+ config: default
990
+ split: test
991
+ revision: None
992
+ metrics:
993
+ - type: map_at_1
994
+ value: 29.57
995
+ - type: map_at_10
996
+ value: 40.004
997
+ - type: map_at_100
998
+ value: 41.75
999
+ - type: map_at_1000
1000
+ value: 41.97
1001
+ - type: map_at_3
1002
+ value: 36.788
1003
+ - type: map_at_5
1004
+ value: 38.671
1005
+ - type: mrr_at_1
1006
+ value: 35.375
1007
+ - type: mrr_at_10
1008
+ value: 45.121
1009
+ - type: mrr_at_100
1010
+ value: 45.994
1011
+ - type: mrr_at_1000
1012
+ value: 46.04
1013
+ - type: mrr_at_3
1014
+ value: 42.227
1015
+ - type: mrr_at_5
1016
+ value: 43.995
1017
+ - type: ndcg_at_1
1018
+ value: 35.375
1019
+ - type: ndcg_at_10
1020
+ value: 46.392
1021
+ - type: ndcg_at_100
1022
+ value: 52.196
1023
+ - type: ndcg_at_1000
1024
+ value: 54.274
1025
+ - type: ndcg_at_3
1026
+ value: 41.163
1027
+ - type: ndcg_at_5
1028
+ value: 43.813
1029
+ - type: precision_at_1
1030
+ value: 35.375
1031
+ - type: precision_at_10
1032
+ value: 8.676
1033
+ - type: precision_at_100
1034
+ value: 1.678
1035
+ - type: precision_at_1000
1036
+ value: 0.253
1037
+ - type: precision_at_3
1038
+ value: 19.104
1039
+ - type: precision_at_5
1040
+ value: 13.913
1041
+ - type: recall_at_1
1042
+ value: 29.57
1043
+ - type: recall_at_10
1044
+ value: 58.779
1045
+ - type: recall_at_100
1046
+ value: 83.337
1047
+ - type: recall_at_1000
1048
+ value: 95.979
1049
+ - type: recall_at_3
1050
+ value: 44.005
1051
+ - type: recall_at_5
1052
+ value: 50.975
1053
+ - task:
1054
+ type: Retrieval
1055
+ dataset:
1056
+ type: BeIR/cqadupstack
1057
+ name: MTEB CQADupstackWordpressRetrieval
1058
+ config: default
1059
+ split: test
1060
+ revision: None
1061
+ metrics:
1062
+ - type: map_at_1
1063
+ value: 20.832
1064
+ - type: map_at_10
1065
+ value: 29.733999999999998
1066
+ - type: map_at_100
1067
+ value: 30.727
1068
+ - type: map_at_1000
1069
+ value: 30.843999999999998
1070
+ - type: map_at_3
1071
+ value: 26.834999999999997
1072
+ - type: map_at_5
1073
+ value: 28.555999999999997
1074
+ - type: mrr_at_1
1075
+ value: 22.921
1076
+ - type: mrr_at_10
1077
+ value: 31.791999999999998
1078
+ - type: mrr_at_100
1079
+ value: 32.666000000000004
1080
+ - type: mrr_at_1000
1081
+ value: 32.751999999999995
1082
+ - type: mrr_at_3
1083
+ value: 29.144
1084
+ - type: mrr_at_5
1085
+ value: 30.622
1086
+ - type: ndcg_at_1
1087
+ value: 22.921
1088
+ - type: ndcg_at_10
1089
+ value: 34.915
1090
+ - type: ndcg_at_100
1091
+ value: 39.744
1092
+ - type: ndcg_at_1000
1093
+ value: 42.407000000000004
1094
+ - type: ndcg_at_3
1095
+ value: 29.421000000000003
1096
+ - type: ndcg_at_5
1097
+ value: 32.211
1098
+ - type: precision_at_1
1099
+ value: 22.921
1100
+ - type: precision_at_10
1101
+ value: 5.675
1102
+ - type: precision_at_100
1103
+ value: 0.872
1104
+ - type: precision_at_1000
1105
+ value: 0.121
1106
+ - type: precision_at_3
1107
+ value: 12.753999999999998
1108
+ - type: precision_at_5
1109
+ value: 9.353
1110
+ - type: recall_at_1
1111
+ value: 20.832
1112
+ - type: recall_at_10
1113
+ value: 48.795
1114
+ - type: recall_at_100
1115
+ value: 70.703
1116
+ - type: recall_at_1000
1117
+ value: 90.187
1118
+ - type: recall_at_3
1119
+ value: 34.455000000000005
1120
+ - type: recall_at_5
1121
+ value: 40.967
1122
+ - task:
1123
+ type: Retrieval
1124
+ dataset:
1125
+ type: climate-fever
1126
+ name: MTEB ClimateFEVER
1127
+ config: default
1128
+ split: test
1129
+ revision: None
1130
+ metrics:
1131
+ - type: map_at_1
1132
+ value: 10.334
1133
+ - type: map_at_10
1134
+ value: 19.009999999999998
1135
+ - type: map_at_100
1136
+ value: 21.129
1137
+ - type: map_at_1000
1138
+ value: 21.328
1139
+ - type: map_at_3
1140
+ value: 15.152
1141
+ - type: map_at_5
1142
+ value: 17.084
1143
+ - type: mrr_at_1
1144
+ value: 23.453
1145
+ - type: mrr_at_10
1146
+ value: 36.099
1147
+ - type: mrr_at_100
1148
+ value: 37.069
1149
+ - type: mrr_at_1000
1150
+ value: 37.104
1151
+ - type: mrr_at_3
1152
+ value: 32.096000000000004
1153
+ - type: mrr_at_5
1154
+ value: 34.451
1155
+ - type: ndcg_at_1
1156
+ value: 23.453
1157
+ - type: ndcg_at_10
1158
+ value: 27.739000000000004
1159
+ - type: ndcg_at_100
1160
+ value: 35.836
1161
+ - type: ndcg_at_1000
1162
+ value: 39.242
1163
+ - type: ndcg_at_3
1164
+ value: 21.263
1165
+ - type: ndcg_at_5
1166
+ value: 23.677
1167
+ - type: precision_at_1
1168
+ value: 23.453
1169
+ - type: precision_at_10
1170
+ value: 9.199
1171
+ - type: precision_at_100
1172
+ value: 1.791
1173
+ - type: precision_at_1000
1174
+ value: 0.242
1175
+ - type: precision_at_3
1176
+ value: 16.2
1177
+ - type: precision_at_5
1178
+ value: 13.147
1179
+ - type: recall_at_1
1180
+ value: 10.334
1181
+ - type: recall_at_10
1182
+ value: 35.177
1183
+ - type: recall_at_100
1184
+ value: 63.009
1185
+ - type: recall_at_1000
1186
+ value: 81.938
1187
+ - type: recall_at_3
1188
+ value: 19.914
1189
+ - type: recall_at_5
1190
+ value: 26.077
1191
+ - task:
1192
+ type: Retrieval
1193
+ dataset:
1194
+ type: dbpedia-entity
1195
+ name: MTEB DBPedia
1196
+ config: default
1197
+ split: test
1198
+ revision: None
1199
+ metrics:
1200
+ - type: map_at_1
1201
+ value: 8.212
1202
+ - type: map_at_10
1203
+ value: 17.386
1204
+ - type: map_at_100
1205
+ value: 24.234
1206
+ - type: map_at_1000
1207
+ value: 25.724999999999998
1208
+ - type: map_at_3
1209
+ value: 12.727
1210
+ - type: map_at_5
1211
+ value: 14.785
1212
+ - type: mrr_at_1
1213
+ value: 59.25
1214
+ - type: mrr_at_10
1215
+ value: 68.687
1216
+ - type: mrr_at_100
1217
+ value: 69.133
1218
+ - type: mrr_at_1000
1219
+ value: 69.14099999999999
1220
+ - type: mrr_at_3
1221
+ value: 66.917
1222
+ - type: mrr_at_5
1223
+ value: 67.742
1224
+ - type: ndcg_at_1
1225
+ value: 48.625
1226
+ - type: ndcg_at_10
1227
+ value: 36.675999999999995
1228
+ - type: ndcg_at_100
1229
+ value: 41.543
1230
+ - type: ndcg_at_1000
1231
+ value: 49.241
1232
+ - type: ndcg_at_3
1233
+ value: 41.373
1234
+ - type: ndcg_at_5
1235
+ value: 38.707
1236
+ - type: precision_at_1
1237
+ value: 59.25
1238
+ - type: precision_at_10
1239
+ value: 28.525
1240
+ - type: precision_at_100
1241
+ value: 9.027000000000001
1242
+ - type: precision_at_1000
1243
+ value: 1.8339999999999999
1244
+ - type: precision_at_3
1245
+ value: 44.833
1246
+ - type: precision_at_5
1247
+ value: 37.35
1248
+ - type: recall_at_1
1249
+ value: 8.212
1250
+ - type: recall_at_10
1251
+ value: 23.188
1252
+ - type: recall_at_100
1253
+ value: 48.613
1254
+ - type: recall_at_1000
1255
+ value: 73.093
1256
+ - type: recall_at_3
1257
+ value: 14.419
1258
+ - type: recall_at_5
1259
+ value: 17.798
1260
+ - task:
1261
+ type: Classification
1262
+ dataset:
1263
+ type: mteb/emotion
1264
+ name: MTEB EmotionClassification
1265
+ config: default
1266
+ split: test
1267
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1268
+ metrics:
1269
+ - type: accuracy
1270
+ value: 52.725
1271
+ - type: f1
1272
+ value: 46.50743309855908
1273
+ - task:
1274
+ type: Retrieval
1275
+ dataset:
1276
+ type: fever
1277
+ name: MTEB FEVER
1278
+ config: default
1279
+ split: test
1280
+ revision: None
1281
+ metrics:
1282
+ - type: map_at_1
1283
+ value: 55.086
1284
+ - type: map_at_10
1285
+ value: 66.914
1286
+ - type: map_at_100
1287
+ value: 67.321
1288
+ - type: map_at_1000
1289
+ value: 67.341
1290
+ - type: map_at_3
1291
+ value: 64.75800000000001
1292
+ - type: map_at_5
1293
+ value: 66.189
1294
+ - type: mrr_at_1
1295
+ value: 59.28600000000001
1296
+ - type: mrr_at_10
1297
+ value: 71.005
1298
+ - type: mrr_at_100
1299
+ value: 71.304
1300
+ - type: mrr_at_1000
1301
+ value: 71.313
1302
+ - type: mrr_at_3
1303
+ value: 69.037
1304
+ - type: mrr_at_5
1305
+ value: 70.35
1306
+ - type: ndcg_at_1
1307
+ value: 59.28600000000001
1308
+ - type: ndcg_at_10
1309
+ value: 72.695
1310
+ - type: ndcg_at_100
1311
+ value: 74.432
1312
+ - type: ndcg_at_1000
1313
+ value: 74.868
1314
+ - type: ndcg_at_3
1315
+ value: 68.72200000000001
1316
+ - type: ndcg_at_5
1317
+ value: 71.081
1318
+ - type: precision_at_1
1319
+ value: 59.28600000000001
1320
+ - type: precision_at_10
1321
+ value: 9.499
1322
+ - type: precision_at_100
1323
+ value: 1.052
1324
+ - type: precision_at_1000
1325
+ value: 0.11100000000000002
1326
+ - type: precision_at_3
1327
+ value: 27.503
1328
+ - type: precision_at_5
1329
+ value: 17.854999999999997
1330
+ - type: recall_at_1
1331
+ value: 55.086
1332
+ - type: recall_at_10
1333
+ value: 86.453
1334
+ - type: recall_at_100
1335
+ value: 94.028
1336
+ - type: recall_at_1000
1337
+ value: 97.052
1338
+ - type: recall_at_3
1339
+ value: 75.821
1340
+ - type: recall_at_5
1341
+ value: 81.6
1342
+ - task:
1343
+ type: Retrieval
1344
+ dataset:
1345
+ type: fiqa
1346
+ name: MTEB FiQA2018
1347
+ config: default
1348
+ split: test
1349
+ revision: None
1350
+ metrics:
1351
+ - type: map_at_1
1352
+ value: 22.262999999999998
1353
+ - type: map_at_10
1354
+ value: 37.488
1355
+ - type: map_at_100
1356
+ value: 39.498
1357
+ - type: map_at_1000
1358
+ value: 39.687
1359
+ - type: map_at_3
1360
+ value: 32.529
1361
+ - type: map_at_5
1362
+ value: 35.455
1363
+ - type: mrr_at_1
1364
+ value: 44.907000000000004
1365
+ - type: mrr_at_10
1366
+ value: 53.239000000000004
1367
+ - type: mrr_at_100
1368
+ value: 54.086
1369
+ - type: mrr_at_1000
1370
+ value: 54.122
1371
+ - type: mrr_at_3
1372
+ value: 51.235
1373
+ - type: mrr_at_5
1374
+ value: 52.415
1375
+ - type: ndcg_at_1
1376
+ value: 44.907000000000004
1377
+ - type: ndcg_at_10
1378
+ value: 45.446
1379
+ - type: ndcg_at_100
1380
+ value: 52.429
1381
+ - type: ndcg_at_1000
1382
+ value: 55.169000000000004
1383
+ - type: ndcg_at_3
1384
+ value: 41.882000000000005
1385
+ - type: ndcg_at_5
1386
+ value: 43.178
1387
+ - type: precision_at_1
1388
+ value: 44.907000000000004
1389
+ - type: precision_at_10
1390
+ value: 12.931999999999999
1391
+ - type: precision_at_100
1392
+ value: 2.025
1393
+ - type: precision_at_1000
1394
+ value: 0.248
1395
+ - type: precision_at_3
1396
+ value: 28.652
1397
+ - type: precision_at_5
1398
+ value: 21.204
1399
+ - type: recall_at_1
1400
+ value: 22.262999999999998
1401
+ - type: recall_at_10
1402
+ value: 52.447
1403
+ - type: recall_at_100
1404
+ value: 78.045
1405
+ - type: recall_at_1000
1406
+ value: 94.419
1407
+ - type: recall_at_3
1408
+ value: 38.064
1409
+ - type: recall_at_5
1410
+ value: 44.769
1411
+ - task:
1412
+ type: Retrieval
1413
+ dataset:
1414
+ type: hotpotqa
1415
+ name: MTEB HotpotQA
1416
+ config: default
1417
+ split: test
1418
+ revision: None
1419
+ metrics:
1420
+ - type: map_at_1
1421
+ value: 32.519
1422
+ - type: map_at_10
1423
+ value: 45.831
1424
+ - type: map_at_100
1425
+ value: 46.815
1426
+ - type: map_at_1000
1427
+ value: 46.899
1428
+ - type: map_at_3
1429
+ value: 42.836
1430
+ - type: map_at_5
1431
+ value: 44.65
1432
+ - type: mrr_at_1
1433
+ value: 65.037
1434
+ - type: mrr_at_10
1435
+ value: 72.16
1436
+ - type: mrr_at_100
1437
+ value: 72.51100000000001
1438
+ - type: mrr_at_1000
1439
+ value: 72.53
1440
+ - type: mrr_at_3
1441
+ value: 70.682
1442
+ - type: mrr_at_5
1443
+ value: 71.54599999999999
1444
+ - type: ndcg_at_1
1445
+ value: 65.037
1446
+ - type: ndcg_at_10
1447
+ value: 55.17999999999999
1448
+ - type: ndcg_at_100
1449
+ value: 58.888
1450
+ - type: ndcg_at_1000
1451
+ value: 60.648
1452
+ - type: ndcg_at_3
1453
+ value: 50.501
1454
+ - type: ndcg_at_5
1455
+ value: 52.977
1456
+ - type: precision_at_1
1457
+ value: 65.037
1458
+ - type: precision_at_10
1459
+ value: 11.530999999999999
1460
+ - type: precision_at_100
1461
+ value: 1.4460000000000002
1462
+ - type: precision_at_1000
1463
+ value: 0.168
1464
+ - type: precision_at_3
1465
+ value: 31.483
1466
+ - type: precision_at_5
1467
+ value: 20.845
1468
+ - type: recall_at_1
1469
+ value: 32.519
1470
+ - type: recall_at_10
1471
+ value: 57.657000000000004
1472
+ - type: recall_at_100
1473
+ value: 72.30199999999999
1474
+ - type: recall_at_1000
1475
+ value: 84.024
1476
+ - type: recall_at_3
1477
+ value: 47.225
1478
+ - type: recall_at_5
1479
+ value: 52.113
1480
+ - task:
1481
+ type: Classification
1482
+ dataset:
1483
+ type: mteb/imdb
1484
+ name: MTEB ImdbClassification
1485
+ config: default
1486
+ split: test
1487
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1488
+ metrics:
1489
+ - type: accuracy
1490
+ value: 88.3168
1491
+ - type: ap
1492
+ value: 83.80165516037135
1493
+ - type: f1
1494
+ value: 88.29942471066407
1495
+ - task:
1496
+ type: Retrieval
1497
+ dataset:
1498
+ type: msmarco
1499
+ name: MTEB MSMARCO
1500
+ config: default
1501
+ split: dev
1502
+ revision: None
1503
+ metrics:
1504
+ - type: map_at_1
1505
+ value: 20.724999999999998
1506
+ - type: map_at_10
1507
+ value: 32.736
1508
+ - type: map_at_100
1509
+ value: 33.938
1510
+ - type: map_at_1000
1511
+ value: 33.991
1512
+ - type: map_at_3
1513
+ value: 28.788000000000004
1514
+ - type: map_at_5
1515
+ value: 31.016
1516
+ - type: mrr_at_1
1517
+ value: 21.361
1518
+ - type: mrr_at_10
1519
+ value: 33.323
1520
+ - type: mrr_at_100
1521
+ value: 34.471000000000004
1522
+ - type: mrr_at_1000
1523
+ value: 34.518
1524
+ - type: mrr_at_3
1525
+ value: 29.453000000000003
1526
+ - type: mrr_at_5
1527
+ value: 31.629
1528
+ - type: ndcg_at_1
1529
+ value: 21.361
1530
+ - type: ndcg_at_10
1531
+ value: 39.649
1532
+ - type: ndcg_at_100
1533
+ value: 45.481
1534
+ - type: ndcg_at_1000
1535
+ value: 46.775
1536
+ - type: ndcg_at_3
1537
+ value: 31.594
1538
+ - type: ndcg_at_5
1539
+ value: 35.543
1540
+ - type: precision_at_1
1541
+ value: 21.361
1542
+ - type: precision_at_10
1543
+ value: 6.3740000000000006
1544
+ - type: precision_at_100
1545
+ value: 0.931
1546
+ - type: precision_at_1000
1547
+ value: 0.104
1548
+ - type: precision_at_3
1549
+ value: 13.514999999999999
1550
+ - type: precision_at_5
1551
+ value: 10.100000000000001
1552
+ - type: recall_at_1
1553
+ value: 20.724999999999998
1554
+ - type: recall_at_10
1555
+ value: 61.034
1556
+ - type: recall_at_100
1557
+ value: 88.062
1558
+ - type: recall_at_1000
1559
+ value: 97.86399999999999
1560
+ - type: recall_at_3
1561
+ value: 39.072
1562
+ - type: recall_at_5
1563
+ value: 48.53
1564
+ - task:
1565
+ type: Classification
1566
+ dataset:
1567
+ type: mteb/mtop_domain
1568
+ name: MTEB MTOPDomainClassification (en)
1569
+ config: en
1570
+ split: test
1571
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1572
+ metrics:
1573
+ - type: accuracy
1574
+ value: 93.8919288645691
1575
+ - type: f1
1576
+ value: 93.57059586398059
1577
+ - task:
1578
+ type: Classification
1579
+ dataset:
1580
+ type: mteb/mtop_intent
1581
+ name: MTEB MTOPIntentClassification (en)
1582
+ config: en
1583
+ split: test
1584
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1585
+ metrics:
1586
+ - type: accuracy
1587
+ value: 67.97993616051072
1588
+ - type: f1
1589
+ value: 48.244319183606535
1590
+ - task:
1591
+ type: Classification
1592
+ dataset:
1593
+ type: mteb/amazon_massive_intent
1594
+ name: MTEB MassiveIntentClassification (en)
1595
+ config: en
1596
+ split: test
1597
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1598
+ metrics:
1599
+ - type: accuracy
1600
+ value: 68.90047074646941
1601
+ - type: f1
1602
+ value: 66.48999056063725
1603
+ - task:
1604
+ type: Classification
1605
+ dataset:
1606
+ type: mteb/amazon_massive_scenario
1607
+ name: MTEB MassiveScenarioClassification (en)
1608
+ config: en
1609
+ split: test
1610
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1611
+ metrics:
1612
+ - type: accuracy
1613
+ value: 73.34566240753195
1614
+ - type: f1
1615
+ value: 73.54164154290658
1616
+ - task:
1617
+ type: Clustering
1618
+ dataset:
1619
+ type: mteb/medrxiv-clustering-p2p
1620
+ name: MTEB MedrxivClusteringP2P
1621
+ config: default
1622
+ split: test
1623
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1624
+ metrics:
1625
+ - type: v_measure
1626
+ value: 34.21866934757011
1627
+ - task:
1628
+ type: Clustering
1629
+ dataset:
1630
+ type: mteb/medrxiv-clustering-s2s
1631
+ name: MTEB MedrxivClusteringS2S
1632
+ config: default
1633
+ split: test
1634
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1635
+ metrics:
1636
+ - type: v_measure
1637
+ value: 32.000936217235534
1638
+ - task:
1639
+ type: Reranking
1640
+ dataset:
1641
+ type: mteb/mind_small
1642
+ name: MTEB MindSmallReranking
1643
+ config: default
1644
+ split: test
1645
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1646
+ metrics:
1647
+ - type: map
1648
+ value: 31.68189362520352
1649
+ - type: mrr
1650
+ value: 32.69603637784303
1651
+ - task:
1652
+ type: Retrieval
1653
+ dataset:
1654
+ type: nfcorpus
1655
+ name: MTEB NFCorpus
1656
+ config: default
1657
+ split: test
1658
+ revision: None
1659
+ metrics:
1660
+ - type: map_at_1
1661
+ value: 6.078
1662
+ - type: map_at_10
1663
+ value: 12.671
1664
+ - type: map_at_100
1665
+ value: 16.291
1666
+ - type: map_at_1000
1667
+ value: 17.855999999999998
1668
+ - type: map_at_3
1669
+ value: 9.610000000000001
1670
+ - type: map_at_5
1671
+ value: 11.152
1672
+ - type: mrr_at_1
1673
+ value: 43.963
1674
+ - type: mrr_at_10
1675
+ value: 53.173
1676
+ - type: mrr_at_100
1677
+ value: 53.718999999999994
1678
+ - type: mrr_at_1000
1679
+ value: 53.756
1680
+ - type: mrr_at_3
1681
+ value: 50.980000000000004
1682
+ - type: mrr_at_5
1683
+ value: 52.42
1684
+ - type: ndcg_at_1
1685
+ value: 42.415000000000006
1686
+ - type: ndcg_at_10
1687
+ value: 34.086
1688
+ - type: ndcg_at_100
1689
+ value: 32.545
1690
+ - type: ndcg_at_1000
1691
+ value: 41.144999999999996
1692
+ - type: ndcg_at_3
1693
+ value: 39.434999999999995
1694
+ - type: ndcg_at_5
1695
+ value: 37.888
1696
+ - type: precision_at_1
1697
+ value: 43.653
1698
+ - type: precision_at_10
1699
+ value: 25.014999999999997
1700
+ - type: precision_at_100
1701
+ value: 8.594
1702
+ - type: precision_at_1000
1703
+ value: 2.169
1704
+ - type: precision_at_3
1705
+ value: 37.049
1706
+ - type: precision_at_5
1707
+ value: 33.065
1708
+ - type: recall_at_1
1709
+ value: 6.078
1710
+ - type: recall_at_10
1711
+ value: 16.17
1712
+ - type: recall_at_100
1713
+ value: 34.512
1714
+ - type: recall_at_1000
1715
+ value: 65.447
1716
+ - type: recall_at_3
1717
+ value: 10.706
1718
+ - type: recall_at_5
1719
+ value: 13.158
1720
+ - task:
1721
+ type: Retrieval
1722
+ dataset:
1723
+ type: nq
1724
+ name: MTEB NQ
1725
+ config: default
1726
+ split: test
1727
+ revision: None
1728
+ metrics:
1729
+ - type: map_at_1
1730
+ value: 26.91
1731
+ - type: map_at_10
1732
+ value: 41.851
1733
+ - type: map_at_100
1734
+ value: 42.984
1735
+ - type: map_at_1000
1736
+ value: 43.02
1737
+ - type: map_at_3
1738
+ value: 37.187
1739
+ - type: map_at_5
1740
+ value: 39.983000000000004
1741
+ - type: mrr_at_1
1742
+ value: 30.301000000000002
1743
+ - type: mrr_at_10
1744
+ value: 44.289
1745
+ - type: mrr_at_100
1746
+ value: 45.146
1747
+ - type: mrr_at_1000
1748
+ value: 45.17
1749
+ - type: mrr_at_3
1750
+ value: 40.31
1751
+ - type: mrr_at_5
1752
+ value: 42.760999999999996
1753
+ - type: ndcg_at_1
1754
+ value: 30.272
1755
+ - type: ndcg_at_10
1756
+ value: 49.834
1757
+ - type: ndcg_at_100
1758
+ value: 54.639
1759
+ - type: ndcg_at_1000
1760
+ value: 55.413999999999994
1761
+ - type: ndcg_at_3
1762
+ value: 41.02
1763
+ - type: ndcg_at_5
1764
+ value: 45.742
1765
+ - type: precision_at_1
1766
+ value: 30.272
1767
+ - type: precision_at_10
1768
+ value: 8.537
1769
+ - type: precision_at_100
1770
+ value: 1.124
1771
+ - type: precision_at_1000
1772
+ value: 0.12
1773
+ - type: precision_at_3
1774
+ value: 18.907
1775
+ - type: precision_at_5
1776
+ value: 14.085
1777
+ - type: recall_at_1
1778
+ value: 26.91
1779
+ - type: recall_at_10
1780
+ value: 71.787
1781
+ - type: recall_at_100
1782
+ value: 92.656
1783
+ - type: recall_at_1000
1784
+ value: 98.368
1785
+ - type: recall_at_3
1786
+ value: 49.001
1787
+ - type: recall_at_5
1788
+ value: 59.917
1789
+ - task:
1790
+ type: Retrieval
1791
+ dataset:
1792
+ type: quora
1793
+ name: MTEB QuoraRetrieval
1794
+ config: default
1795
+ split: test
1796
+ revision: None
1797
+ metrics:
1798
+ - type: map_at_1
1799
+ value: 70.557
1800
+ - type: map_at_10
1801
+ value: 84.729
1802
+ - type: map_at_100
1803
+ value: 85.369
1804
+ - type: map_at_1000
1805
+ value: 85.382
1806
+ - type: map_at_3
1807
+ value: 81.72
1808
+ - type: map_at_5
1809
+ value: 83.613
1810
+ - type: mrr_at_1
1811
+ value: 81.3
1812
+ - type: mrr_at_10
1813
+ value: 87.488
1814
+ - type: mrr_at_100
1815
+ value: 87.588
1816
+ - type: mrr_at_1000
1817
+ value: 87.589
1818
+ - type: mrr_at_3
1819
+ value: 86.53
1820
+ - type: mrr_at_5
1821
+ value: 87.18599999999999
1822
+ - type: ndcg_at_1
1823
+ value: 81.28999999999999
1824
+ - type: ndcg_at_10
1825
+ value: 88.442
1826
+ - type: ndcg_at_100
1827
+ value: 89.637
1828
+ - type: ndcg_at_1000
1829
+ value: 89.70700000000001
1830
+ - type: ndcg_at_3
1831
+ value: 85.55199999999999
1832
+ - type: ndcg_at_5
1833
+ value: 87.154
1834
+ - type: precision_at_1
1835
+ value: 81.28999999999999
1836
+ - type: precision_at_10
1837
+ value: 13.489999999999998
1838
+ - type: precision_at_100
1839
+ value: 1.54
1840
+ - type: precision_at_1000
1841
+ value: 0.157
1842
+ - type: precision_at_3
1843
+ value: 37.553
1844
+ - type: precision_at_5
1845
+ value: 24.708
1846
+ - type: recall_at_1
1847
+ value: 70.557
1848
+ - type: recall_at_10
1849
+ value: 95.645
1850
+ - type: recall_at_100
1851
+ value: 99.693
1852
+ - type: recall_at_1000
1853
+ value: 99.995
1854
+ - type: recall_at_3
1855
+ value: 87.359
1856
+ - type: recall_at_5
1857
+ value: 91.89699999999999
1858
+ - task:
1859
+ type: Clustering
1860
+ dataset:
1861
+ type: mteb/reddit-clustering
1862
+ name: MTEB RedditClustering
1863
+ config: default
1864
+ split: test
1865
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1866
+ metrics:
1867
+ - type: v_measure
1868
+ value: 63.65060114776209
1869
+ - task:
1870
+ type: Clustering
1871
+ dataset:
1872
+ type: mteb/reddit-clustering-p2p
1873
+ name: MTEB RedditClusteringP2P
1874
+ config: default
1875
+ split: test
1876
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1877
+ metrics:
1878
+ - type: v_measure
1879
+ value: 64.63271250680617
1880
+ - task:
1881
+ type: Retrieval
1882
+ dataset:
1883
+ type: scidocs
1884
+ name: MTEB SCIDOCS
1885
+ config: default
1886
+ split: test
1887
+ revision: None
1888
+ metrics:
1889
+ - type: map_at_1
1890
+ value: 4.263
1891
+ - type: map_at_10
1892
+ value: 10.801
1893
+ - type: map_at_100
1894
+ value: 12.888
1895
+ - type: map_at_1000
1896
+ value: 13.224
1897
+ - type: map_at_3
1898
+ value: 7.362
1899
+ - type: map_at_5
1900
+ value: 9.149000000000001
1901
+ - type: mrr_at_1
1902
+ value: 21.0
1903
+ - type: mrr_at_10
1904
+ value: 31.416
1905
+ - type: mrr_at_100
1906
+ value: 32.513
1907
+ - type: mrr_at_1000
1908
+ value: 32.58
1909
+ - type: mrr_at_3
1910
+ value: 28.116999999999997
1911
+ - type: mrr_at_5
1912
+ value: 29.976999999999997
1913
+ - type: ndcg_at_1
1914
+ value: 21.0
1915
+ - type: ndcg_at_10
1916
+ value: 18.551000000000002
1917
+ - type: ndcg_at_100
1918
+ value: 26.657999999999998
1919
+ - type: ndcg_at_1000
1920
+ value: 32.485
1921
+ - type: ndcg_at_3
1922
+ value: 16.834
1923
+ - type: ndcg_at_5
1924
+ value: 15.204999999999998
1925
+ - type: precision_at_1
1926
+ value: 21.0
1927
+ - type: precision_at_10
1928
+ value: 9.84
1929
+ - type: precision_at_100
1930
+ value: 2.16
1931
+ - type: precision_at_1000
1932
+ value: 0.35500000000000004
1933
+ - type: precision_at_3
1934
+ value: 15.667
1935
+ - type: precision_at_5
1936
+ value: 13.62
1937
+ - type: recall_at_1
1938
+ value: 4.263
1939
+ - type: recall_at_10
1940
+ value: 19.922
1941
+ - type: recall_at_100
1942
+ value: 43.808
1943
+ - type: recall_at_1000
1944
+ value: 72.14500000000001
1945
+ - type: recall_at_3
1946
+ value: 9.493
1947
+ - type: recall_at_5
1948
+ value: 13.767999999999999
1949
+ - task:
1950
+ type: STS
1951
+ dataset:
1952
+ type: mteb/sickr-sts
1953
+ name: MTEB SICK-R
1954
+ config: default
1955
+ split: test
1956
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1957
+ metrics:
1958
+ - type: cos_sim_spearman
1959
+ value: 81.27446313317233
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_spearman
1970
+ value: 76.27963301217527
1971
+ - task:
1972
+ type: STS
1973
+ dataset:
1974
+ type: mteb/sts13-sts
1975
+ name: MTEB STS13
1976
+ config: default
1977
+ split: test
1978
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1979
+ metrics:
1980
+ - type: cos_sim_spearman
1981
+ value: 88.18495048450949
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ type: mteb/sts14-sts
1986
+ name: MTEB STS14
1987
+ config: default
1988
+ split: test
1989
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1990
+ metrics:
1991
+ - type: cos_sim_spearman
1992
+ value: 81.91982338692046
1993
+ - task:
1994
+ type: STS
1995
+ dataset:
1996
+ type: mteb/sts15-sts
1997
+ name: MTEB STS15
1998
+ config: default
1999
+ split: test
2000
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2001
+ metrics:
2002
+ - type: cos_sim_spearman
2003
+ value: 89.00896818385291
2004
+ - task:
2005
+ type: STS
2006
+ dataset:
2007
+ type: mteb/sts16-sts
2008
+ name: MTEB STS16
2009
+ config: default
2010
+ split: test
2011
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2012
+ metrics:
2013
+ - type: cos_sim_spearman
2014
+ value: 85.48814644586132
2015
+ - task:
2016
+ type: STS
2017
+ dataset:
2018
+ type: mteb/sts17-crosslingual-sts
2019
+ name: MTEB STS17 (en-en)
2020
+ config: en-en
2021
+ split: test
2022
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2023
+ metrics:
2024
+ - type: cos_sim_spearman
2025
+ value: 90.30116926966582
2026
+ - task:
2027
+ type: STS
2028
+ dataset:
2029
+ type: mteb/sts22-crosslingual-sts
2030
+ name: MTEB STS22 (en)
2031
+ config: en
2032
+ split: test
2033
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2034
+ metrics:
2035
+ - type: cos_sim_spearman
2036
+ value: 67.74132963032342
2037
+ - task:
2038
+ type: STS
2039
+ dataset:
2040
+ type: mteb/stsbenchmark-sts
2041
+ name: MTEB STSBenchmark
2042
+ config: default
2043
+ split: test
2044
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2045
+ metrics:
2046
+ - type: cos_sim_spearman
2047
+ value: 86.87741355780479
2048
+ - task:
2049
+ type: Reranking
2050
+ dataset:
2051
+ type: mteb/scidocs-reranking
2052
+ name: MTEB SciDocsRR
2053
+ config: default
2054
+ split: test
2055
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2056
+ metrics:
2057
+ - type: map
2058
+ value: 82.0019012295875
2059
+ - type: mrr
2060
+ value: 94.70267024188593
2061
+ - task:
2062
+ type: Retrieval
2063
+ dataset:
2064
+ type: scifact
2065
+ name: MTEB SciFact
2066
+ config: default
2067
+ split: test
2068
+ revision: None
2069
+ metrics:
2070
+ - type: map_at_1
2071
+ value: 50.05
2072
+ - type: map_at_10
2073
+ value: 59.36
2074
+ - type: map_at_100
2075
+ value: 59.967999999999996
2076
+ - type: map_at_1000
2077
+ value: 60.023
2078
+ - type: map_at_3
2079
+ value: 56.515
2080
+ - type: map_at_5
2081
+ value: 58.272999999999996
2082
+ - type: mrr_at_1
2083
+ value: 53.0
2084
+ - type: mrr_at_10
2085
+ value: 61.102000000000004
2086
+ - type: mrr_at_100
2087
+ value: 61.476
2088
+ - type: mrr_at_1000
2089
+ value: 61.523
2090
+ - type: mrr_at_3
2091
+ value: 58.778
2092
+ - type: mrr_at_5
2093
+ value: 60.128
2094
+ - type: ndcg_at_1
2095
+ value: 53.0
2096
+ - type: ndcg_at_10
2097
+ value: 64.43100000000001
2098
+ - type: ndcg_at_100
2099
+ value: 66.73599999999999
2100
+ - type: ndcg_at_1000
2101
+ value: 68.027
2102
+ - type: ndcg_at_3
2103
+ value: 59.279
2104
+ - type: ndcg_at_5
2105
+ value: 61.888
2106
+ - type: precision_at_1
2107
+ value: 53.0
2108
+ - type: precision_at_10
2109
+ value: 8.767
2110
+ - type: precision_at_100
2111
+ value: 1.01
2112
+ - type: precision_at_1000
2113
+ value: 0.11100000000000002
2114
+ - type: precision_at_3
2115
+ value: 23.444000000000003
2116
+ - type: precision_at_5
2117
+ value: 15.667
2118
+ - type: recall_at_1
2119
+ value: 50.05
2120
+ - type: recall_at_10
2121
+ value: 78.511
2122
+ - type: recall_at_100
2123
+ value: 88.5
2124
+ - type: recall_at_1000
2125
+ value: 98.333
2126
+ - type: recall_at_3
2127
+ value: 64.117
2128
+ - type: recall_at_5
2129
+ value: 70.867
2130
+ - task:
2131
+ type: PairClassification
2132
+ dataset:
2133
+ type: mteb/sprintduplicatequestions-pairclassification
2134
+ name: MTEB SprintDuplicateQuestions
2135
+ config: default
2136
+ split: test
2137
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2138
+ metrics:
2139
+ - type: cos_sim_accuracy
2140
+ value: 99.72178217821782
2141
+ - type: cos_sim_ap
2142
+ value: 93.0728601593541
2143
+ - type: cos_sim_f1
2144
+ value: 85.6727976766699
2145
+ - type: cos_sim_precision
2146
+ value: 83.02063789868667
2147
+ - type: cos_sim_recall
2148
+ value: 88.5
2149
+ - type: dot_accuracy
2150
+ value: 99.72178217821782
2151
+ - type: dot_ap
2152
+ value: 93.07287396168348
2153
+ - type: dot_f1
2154
+ value: 85.6727976766699
2155
+ - type: dot_precision
2156
+ value: 83.02063789868667
2157
+ - type: dot_recall
2158
+ value: 88.5
2159
+ - type: euclidean_accuracy
2160
+ value: 99.72178217821782
2161
+ - type: euclidean_ap
2162
+ value: 93.07285657982895
2163
+ - type: euclidean_f1
2164
+ value: 85.6727976766699
2165
+ - type: euclidean_precision
2166
+ value: 83.02063789868667
2167
+ - type: euclidean_recall
2168
+ value: 88.5
2169
+ - type: manhattan_accuracy
2170
+ value: 99.72475247524753
2171
+ - type: manhattan_ap
2172
+ value: 93.02792973059809
2173
+ - type: manhattan_f1
2174
+ value: 85.7727737973388
2175
+ - type: manhattan_precision
2176
+ value: 87.84067085953879
2177
+ - type: manhattan_recall
2178
+ value: 83.8
2179
+ - type: max_accuracy
2180
+ value: 99.72475247524753
2181
+ - type: max_ap
2182
+ value: 93.07287396168348
2183
+ - type: max_f1
2184
+ value: 85.7727737973388
2185
+ - task:
2186
+ type: Clustering
2187
+ dataset:
2188
+ type: mteb/stackexchange-clustering
2189
+ name: MTEB StackExchangeClustering
2190
+ config: default
2191
+ split: test
2192
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2193
+ metrics:
2194
+ - type: v_measure
2195
+ value: 68.77583615550819
2196
+ - task:
2197
+ type: Clustering
2198
+ dataset:
2199
+ type: mteb/stackexchange-clustering-p2p
2200
+ name: MTEB StackExchangeClusteringP2P
2201
+ config: default
2202
+ split: test
2203
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2204
+ metrics:
2205
+ - type: v_measure
2206
+ value: 36.151636938606956
2207
+ - task:
2208
+ type: Reranking
2209
+ dataset:
2210
+ type: mteb/stackoverflowdupquestions-reranking
2211
+ name: MTEB StackOverflowDupQuestions
2212
+ config: default
2213
+ split: test
2214
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2215
+ metrics:
2216
+ - type: map
2217
+ value: 52.16607939471187
2218
+ - type: mrr
2219
+ value: 52.95172046091163
2220
+ - task:
2221
+ type: Summarization
2222
+ dataset:
2223
+ type: mteb/summeval
2224
+ name: MTEB SummEval
2225
+ config: default
2226
+ split: test
2227
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2228
+ metrics:
2229
+ - type: cos_sim_pearson
2230
+ value: 31.314646669495666
2231
+ - type: cos_sim_spearman
2232
+ value: 31.83562491439455
2233
+ - type: dot_pearson
2234
+ value: 31.314590842874157
2235
+ - type: dot_spearman
2236
+ value: 31.83363065810437
2237
+ - task:
2238
+ type: Retrieval
2239
+ dataset:
2240
+ type: trec-covid
2241
+ name: MTEB TRECCOVID
2242
+ config: default
2243
+ split: test
2244
+ revision: None
2245
+ metrics:
2246
+ - type: map_at_1
2247
+ value: 0.198
2248
+ - type: map_at_10
2249
+ value: 1.3010000000000002
2250
+ - type: map_at_100
2251
+ value: 7.2139999999999995
2252
+ - type: map_at_1000
2253
+ value: 20.179
2254
+ - type: map_at_3
2255
+ value: 0.528
2256
+ - type: map_at_5
2257
+ value: 0.8019999999999999
2258
+ - type: mrr_at_1
2259
+ value: 72.0
2260
+ - type: mrr_at_10
2261
+ value: 83.39999999999999
2262
+ - type: mrr_at_100
2263
+ value: 83.39999999999999
2264
+ - type: mrr_at_1000
2265
+ value: 83.39999999999999
2266
+ - type: mrr_at_3
2267
+ value: 81.667
2268
+ - type: mrr_at_5
2269
+ value: 83.06700000000001
2270
+ - type: ndcg_at_1
2271
+ value: 66.0
2272
+ - type: ndcg_at_10
2273
+ value: 58.059000000000005
2274
+ - type: ndcg_at_100
2275
+ value: 44.316
2276
+ - type: ndcg_at_1000
2277
+ value: 43.147000000000006
2278
+ - type: ndcg_at_3
2279
+ value: 63.815999999999995
2280
+ - type: ndcg_at_5
2281
+ value: 63.005
2282
+ - type: precision_at_1
2283
+ value: 72.0
2284
+ - type: precision_at_10
2285
+ value: 61.4
2286
+ - type: precision_at_100
2287
+ value: 45.62
2288
+ - type: precision_at_1000
2289
+ value: 19.866
2290
+ - type: precision_at_3
2291
+ value: 70.0
2292
+ - type: precision_at_5
2293
+ value: 68.8
2294
+ - type: recall_at_1
2295
+ value: 0.198
2296
+ - type: recall_at_10
2297
+ value: 1.517
2298
+ - type: recall_at_100
2299
+ value: 10.587
2300
+ - type: recall_at_1000
2301
+ value: 41.233
2302
+ - type: recall_at_3
2303
+ value: 0.573
2304
+ - type: recall_at_5
2305
+ value: 0.907
2306
+ - task:
2307
+ type: Retrieval
2308
+ dataset:
2309
+ type: webis-touche2020
2310
+ name: MTEB Touche2020
2311
+ config: default
2312
+ split: test
2313
+ revision: None
2314
+ metrics:
2315
+ - type: map_at_1
2316
+ value: 1.894
2317
+ - type: map_at_10
2318
+ value: 8.488999999999999
2319
+ - type: map_at_100
2320
+ value: 14.445
2321
+ - type: map_at_1000
2322
+ value: 16.078
2323
+ - type: map_at_3
2324
+ value: 4.589
2325
+ - type: map_at_5
2326
+ value: 6.019
2327
+ - type: mrr_at_1
2328
+ value: 22.448999999999998
2329
+ - type: mrr_at_10
2330
+ value: 39.82
2331
+ - type: mrr_at_100
2332
+ value: 40.752
2333
+ - type: mrr_at_1000
2334
+ value: 40.771
2335
+ - type: mrr_at_3
2336
+ value: 34.354
2337
+ - type: mrr_at_5
2338
+ value: 37.721
2339
+ - type: ndcg_at_1
2340
+ value: 19.387999999999998
2341
+ - type: ndcg_at_10
2342
+ value: 21.563
2343
+ - type: ndcg_at_100
2344
+ value: 33.857
2345
+ - type: ndcg_at_1000
2346
+ value: 46.199
2347
+ - type: ndcg_at_3
2348
+ value: 22.296
2349
+ - type: ndcg_at_5
2350
+ value: 21.770999999999997
2351
+ - type: precision_at_1
2352
+ value: 22.448999999999998
2353
+ - type: precision_at_10
2354
+ value: 19.796
2355
+ - type: precision_at_100
2356
+ value: 7.142999999999999
2357
+ - type: precision_at_1000
2358
+ value: 1.541
2359
+ - type: precision_at_3
2360
+ value: 24.490000000000002
2361
+ - type: precision_at_5
2362
+ value: 22.448999999999998
2363
+ - type: recall_at_1
2364
+ value: 1.894
2365
+ - type: recall_at_10
2366
+ value: 14.931
2367
+ - type: recall_at_100
2368
+ value: 45.524
2369
+ - type: recall_at_1000
2370
+ value: 83.243
2371
+ - type: recall_at_3
2372
+ value: 5.712
2373
+ - type: recall_at_5
2374
+ value: 8.386000000000001
2375
+ - task:
2376
+ type: Classification
2377
+ dataset:
2378
+ type: mteb/toxic_conversations_50k
2379
+ name: MTEB ToxicConversationsClassification
2380
+ config: default
2381
+ split: test
2382
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2383
+ metrics:
2384
+ - type: accuracy
2385
+ value: 71.049
2386
+ - type: ap
2387
+ value: 13.85116971310922
2388
+ - type: f1
2389
+ value: 54.37504302487686
2390
+ - task:
2391
+ type: Classification
2392
+ dataset:
2393
+ type: mteb/tweet_sentiment_extraction
2394
+ name: MTEB TweetSentimentExtractionClassification
2395
+ config: default
2396
+ split: test
2397
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2398
+ metrics:
2399
+ - type: accuracy
2400
+ value: 64.1312959818902
2401
+ - type: f1
2402
+ value: 64.11413877009383
2403
+ - task:
2404
+ type: Clustering
2405
+ dataset:
2406
+ type: mteb/twentynewsgroups-clustering
2407
+ name: MTEB TwentyNewsgroupsClustering
2408
+ config: default
2409
+ split: test
2410
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2411
+ metrics:
2412
+ - type: v_measure
2413
+ value: 54.13103431861502
2414
+ - task:
2415
+ type: PairClassification
2416
+ dataset:
2417
+ type: mteb/twittersemeval2015-pairclassification
2418
+ name: MTEB TwitterSemEval2015
2419
+ config: default
2420
+ split: test
2421
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2422
+ metrics:
2423
+ - type: cos_sim_accuracy
2424
+ value: 87.327889372355
2425
+ - type: cos_sim_ap
2426
+ value: 77.42059895975699
2427
+ - type: cos_sim_f1
2428
+ value: 71.02706903250873
2429
+ - type: cos_sim_precision
2430
+ value: 69.75324344950394
2431
+ - type: cos_sim_recall
2432
+ value: 72.34828496042216
2433
+ - type: dot_accuracy
2434
+ value: 87.327889372355
2435
+ - type: dot_ap
2436
+ value: 77.4209479346677
2437
+ - type: dot_f1
2438
+ value: 71.02706903250873
2439
+ - type: dot_precision
2440
+ value: 69.75324344950394
2441
+ - type: dot_recall
2442
+ value: 72.34828496042216
2443
+ - type: euclidean_accuracy
2444
+ value: 87.327889372355
2445
+ - type: euclidean_ap
2446
+ value: 77.42096495861037
2447
+ - type: euclidean_f1
2448
+ value: 71.02706903250873
2449
+ - type: euclidean_precision
2450
+ value: 69.75324344950394
2451
+ - type: euclidean_recall
2452
+ value: 72.34828496042216
2453
+ - type: manhattan_accuracy
2454
+ value: 87.31000774870358
2455
+ - type: manhattan_ap
2456
+ value: 77.38930750711619
2457
+ - type: manhattan_f1
2458
+ value: 71.07935314027831
2459
+ - type: manhattan_precision
2460
+ value: 67.70957726295677
2461
+ - type: manhattan_recall
2462
+ value: 74.80211081794195
2463
+ - type: max_accuracy
2464
+ value: 87.327889372355
2465
+ - type: max_ap
2466
+ value: 77.42096495861037
2467
+ - type: max_f1
2468
+ value: 71.07935314027831
2469
+ - task:
2470
+ type: PairClassification
2471
+ dataset:
2472
+ type: mteb/twitterurlcorpus-pairclassification
2473
+ name: MTEB TwitterURLCorpus
2474
+ config: default
2475
+ split: test
2476
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2477
+ metrics:
2478
+ - type: cos_sim_accuracy
2479
+ value: 89.58939729110878
2480
+ - type: cos_sim_ap
2481
+ value: 87.17594155025475
2482
+ - type: cos_sim_f1
2483
+ value: 79.21146953405018
2484
+ - type: cos_sim_precision
2485
+ value: 76.8918527109307
2486
+ - type: cos_sim_recall
2487
+ value: 81.67539267015707
2488
+ - type: dot_accuracy
2489
+ value: 89.58939729110878
2490
+ - type: dot_ap
2491
+ value: 87.17593963273593
2492
+ - type: dot_f1
2493
+ value: 79.21146953405018
2494
+ - type: dot_precision
2495
+ value: 76.8918527109307
2496
+ - type: dot_recall
2497
+ value: 81.67539267015707
2498
+ - type: euclidean_accuracy
2499
+ value: 89.58939729110878
2500
+ - type: euclidean_ap
2501
+ value: 87.17592466925834
2502
+ - type: euclidean_f1
2503
+ value: 79.21146953405018
2504
+ - type: euclidean_precision
2505
+ value: 76.8918527109307
2506
+ - type: euclidean_recall
2507
+ value: 81.67539267015707
2508
+ - type: manhattan_accuracy
2509
+ value: 89.62626615438352
2510
+ - type: manhattan_ap
2511
+ value: 87.16589873161546
2512
+ - type: manhattan_f1
2513
+ value: 79.25143598295348
2514
+ - type: manhattan_precision
2515
+ value: 76.39494177323712
2516
+ - type: manhattan_recall
2517
+ value: 82.32984293193716
2518
+ - type: max_accuracy
2519
+ value: 89.62626615438352
2520
+ - type: max_ap
2521
+ value: 87.17594155025475
2522
+ - type: max_f1
2523
+ value: 79.25143598295348
2524
  ---
2525
 
2526
  # hkunlp/instructor-large