Sentence Similarity
sentence-transformers
PyTorch
Transformers
English
t5
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
prompt-retrieval
text-reranking
feature-extraction
English
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
Eval Results
multi-train
commited on
Commit
•
11200d7
1
Parent(s):
0afe5b5
Update README.md
Browse files
README.md
CHANGED
@@ -26,7 +26,6 @@ tags:
|
|
26 |
- mteb
|
27 |
language: en
|
28 |
inference: false
|
29 |
-
license: apache-2.0
|
30 |
model-index:
|
31 |
- name: INSTRUCTOR
|
32 |
results:
|
@@ -1900,7 +1899,7 @@ model-index:
|
|
1900 |
- type: map_at_5
|
1901 |
value: 9.149000000000001
|
1902 |
- type: mrr_at_1
|
1903 |
-
value: 21
|
1904 |
- type: mrr_at_10
|
1905 |
value: 31.416
|
1906 |
- type: mrr_at_100
|
@@ -1912,7 +1911,7 @@ model-index:
|
|
1912 |
- type: mrr_at_5
|
1913 |
value: 29.976999999999997
|
1914 |
- type: ndcg_at_1
|
1915 |
-
value: 21
|
1916 |
- type: ndcg_at_10
|
1917 |
value: 18.551000000000002
|
1918 |
- type: ndcg_at_100
|
@@ -1924,7 +1923,7 @@ model-index:
|
|
1924 |
- type: ndcg_at_5
|
1925 |
value: 15.204999999999998
|
1926 |
- type: precision_at_1
|
1927 |
-
value: 21
|
1928 |
- type: precision_at_10
|
1929 |
value: 9.84
|
1930 |
- type: precision_at_100
|
@@ -2081,7 +2080,7 @@ model-index:
|
|
2081 |
- type: map_at_5
|
2082 |
value: 58.272999999999996
|
2083 |
- type: mrr_at_1
|
2084 |
-
value: 53
|
2085 |
- type: mrr_at_10
|
2086 |
value: 61.102000000000004
|
2087 |
- type: mrr_at_100
|
@@ -2093,7 +2092,7 @@ model-index:
|
|
2093 |
- type: mrr_at_5
|
2094 |
value: 60.128
|
2095 |
- type: ndcg_at_1
|
2096 |
-
value: 53
|
2097 |
- type: ndcg_at_10
|
2098 |
value: 64.43100000000001
|
2099 |
- type: ndcg_at_100
|
@@ -2105,7 +2104,7 @@ model-index:
|
|
2105 |
- type: ndcg_at_5
|
2106 |
value: 61.888
|
2107 |
- type: precision_at_1
|
2108 |
-
value: 53
|
2109 |
- type: precision_at_10
|
2110 |
value: 8.767
|
2111 |
- type: precision_at_100
|
@@ -2257,7 +2256,7 @@ model-index:
|
|
2257 |
- type: map_at_5
|
2258 |
value: 0.8019999999999999
|
2259 |
- type: mrr_at_1
|
2260 |
-
value: 72
|
2261 |
- type: mrr_at_10
|
2262 |
value: 83.39999999999999
|
2263 |
- type: mrr_at_100
|
@@ -2269,7 +2268,7 @@ model-index:
|
|
2269 |
- type: mrr_at_5
|
2270 |
value: 83.06700000000001
|
2271 |
- type: ndcg_at_1
|
2272 |
-
value: 66
|
2273 |
- type: ndcg_at_10
|
2274 |
value: 58.059000000000005
|
2275 |
- type: ndcg_at_100
|
@@ -2281,7 +2280,7 @@ model-index:
|
|
2281 |
- type: ndcg_at_5
|
2282 |
value: 63.005
|
2283 |
- type: precision_at_1
|
2284 |
-
value: 72
|
2285 |
- type: precision_at_10
|
2286 |
value: 61.4
|
2287 |
- type: precision_at_100
|
@@ -2289,7 +2288,7 @@ model-index:
|
|
2289 |
- type: precision_at_1000
|
2290 |
value: 19.866
|
2291 |
- type: precision_at_3
|
2292 |
-
value: 70
|
2293 |
- type: precision_at_5
|
2294 |
value: 68.8
|
2295 |
- type: recall_at_1
|
@@ -2607,4 +2606,4 @@ clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
|
|
2607 |
clustering_model.fit(embeddings)
|
2608 |
cluster_assignment = clustering_model.labels_
|
2609 |
print(cluster_assignment)
|
2610 |
-
```
|
|
|
26 |
- mteb
|
27 |
language: en
|
28 |
inference: false
|
|
|
29 |
model-index:
|
30 |
- name: INSTRUCTOR
|
31 |
results:
|
|
|
1899 |
- type: map_at_5
|
1900 |
value: 9.149000000000001
|
1901 |
- type: mrr_at_1
|
1902 |
+
value: 21
|
1903 |
- type: mrr_at_10
|
1904 |
value: 31.416
|
1905 |
- type: mrr_at_100
|
|
|
1911 |
- type: mrr_at_5
|
1912 |
value: 29.976999999999997
|
1913 |
- type: ndcg_at_1
|
1914 |
+
value: 21
|
1915 |
- type: ndcg_at_10
|
1916 |
value: 18.551000000000002
|
1917 |
- type: ndcg_at_100
|
|
|
1923 |
- type: ndcg_at_5
|
1924 |
value: 15.204999999999998
|
1925 |
- type: precision_at_1
|
1926 |
+
value: 21
|
1927 |
- type: precision_at_10
|
1928 |
value: 9.84
|
1929 |
- type: precision_at_100
|
|
|
2080 |
- type: map_at_5
|
2081 |
value: 58.272999999999996
|
2082 |
- type: mrr_at_1
|
2083 |
+
value: 53
|
2084 |
- type: mrr_at_10
|
2085 |
value: 61.102000000000004
|
2086 |
- type: mrr_at_100
|
|
|
2092 |
- type: mrr_at_5
|
2093 |
value: 60.128
|
2094 |
- type: ndcg_at_1
|
2095 |
+
value: 53
|
2096 |
- type: ndcg_at_10
|
2097 |
value: 64.43100000000001
|
2098 |
- type: ndcg_at_100
|
|
|
2104 |
- type: ndcg_at_5
|
2105 |
value: 61.888
|
2106 |
- type: precision_at_1
|
2107 |
+
value: 53
|
2108 |
- type: precision_at_10
|
2109 |
value: 8.767
|
2110 |
- type: precision_at_100
|
|
|
2256 |
- type: map_at_5
|
2257 |
value: 0.8019999999999999
|
2258 |
- type: mrr_at_1
|
2259 |
+
value: 72
|
2260 |
- type: mrr_at_10
|
2261 |
value: 83.39999999999999
|
2262 |
- type: mrr_at_100
|
|
|
2268 |
- type: mrr_at_5
|
2269 |
value: 83.06700000000001
|
2270 |
- type: ndcg_at_1
|
2271 |
+
value: 66
|
2272 |
- type: ndcg_at_10
|
2273 |
value: 58.059000000000005
|
2274 |
- type: ndcg_at_100
|
|
|
2280 |
- type: ndcg_at_5
|
2281 |
value: 63.005
|
2282 |
- type: precision_at_1
|
2283 |
+
value: 72
|
2284 |
- type: precision_at_10
|
2285 |
value: 61.4
|
2286 |
- type: precision_at_100
|
|
|
2288 |
- type: precision_at_1000
|
2289 |
value: 19.866
|
2290 |
- type: precision_at_3
|
2291 |
+
value: 70
|
2292 |
- type: precision_at_5
|
2293 |
value: 68.8
|
2294 |
- type: recall_at_1
|
|
|
2606 |
clustering_model.fit(embeddings)
|
2607 |
cluster_assignment = clustering_model.labels_
|
2608 |
print(cluster_assignment)
|
2609 |
+
```
|