File size: 4,877 Bytes
e2e9878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_beit_large_adamax_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9016666666666666
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_10x_beit_large_adamax_001_fold3
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0324
- Accuracy: 0.9017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3438 | 1.0 | 750 | 0.3826 | 0.8517 |
| 0.2931 | 2.0 | 1500 | 0.3034 | 0.89 |
| 0.2025 | 3.0 | 2250 | 0.3971 | 0.8783 |
| 0.2582 | 4.0 | 3000 | 0.3086 | 0.8867 |
| 0.2483 | 5.0 | 3750 | 0.3346 | 0.8917 |
| 0.1606 | 6.0 | 4500 | 0.3908 | 0.8717 |
| 0.1236 | 7.0 | 5250 | 0.4286 | 0.8783 |
| 0.1197 | 8.0 | 6000 | 0.3887 | 0.9 |
| 0.0412 | 9.0 | 6750 | 0.4924 | 0.885 |
| 0.0384 | 10.0 | 7500 | 0.5551 | 0.89 |
| 0.0583 | 11.0 | 8250 | 0.4882 | 0.9017 |
| 0.0806 | 12.0 | 9000 | 0.5902 | 0.88 |
| 0.0489 | 13.0 | 9750 | 0.5212 | 0.88 |
| 0.0353 | 14.0 | 10500 | 0.5171 | 0.9 |
| 0.0094 | 15.0 | 11250 | 0.6341 | 0.895 |
| 0.0154 | 16.0 | 12000 | 0.5409 | 0.9133 |
| 0.0118 | 17.0 | 12750 | 0.6110 | 0.8833 |
| 0.0159 | 18.0 | 13500 | 0.6873 | 0.9033 |
| 0.0026 | 19.0 | 14250 | 0.7871 | 0.8983 |
| 0.0163 | 20.0 | 15000 | 0.6341 | 0.895 |
| 0.0002 | 21.0 | 15750 | 0.7139 | 0.9017 |
| 0.0006 | 22.0 | 16500 | 0.6717 | 0.9033 |
| 0.0266 | 23.0 | 17250 | 0.6268 | 0.895 |
| 0.0051 | 24.0 | 18000 | 0.6425 | 0.905 |
| 0.0 | 25.0 | 18750 | 0.7506 | 0.91 |
| 0.0004 | 26.0 | 19500 | 0.6864 | 0.9017 |
| 0.0002 | 27.0 | 20250 | 0.6111 | 0.9117 |
| 0.0163 | 28.0 | 21000 | 0.6875 | 0.9017 |
| 0.0001 | 29.0 | 21750 | 0.8050 | 0.8967 |
| 0.0002 | 30.0 | 22500 | 0.7397 | 0.8967 |
| 0.0004 | 31.0 | 23250 | 0.8218 | 0.8983 |
| 0.0 | 32.0 | 24000 | 0.8725 | 0.8983 |
| 0.0 | 33.0 | 24750 | 0.9662 | 0.8967 |
| 0.0 | 34.0 | 25500 | 0.9148 | 0.9083 |
| 0.0 | 35.0 | 26250 | 0.8492 | 0.9083 |
| 0.0001 | 36.0 | 27000 | 0.8264 | 0.9067 |
| 0.0 | 37.0 | 27750 | 0.8650 | 0.895 |
| 0.0004 | 38.0 | 28500 | 0.9030 | 0.91 |
| 0.0 | 39.0 | 29250 | 0.9540 | 0.9 |
| 0.0 | 40.0 | 30000 | 1.0292 | 0.8883 |
| 0.0 | 41.0 | 30750 | 1.0282 | 0.8917 |
| 0.0 | 42.0 | 31500 | 1.0128 | 0.8933 |
| 0.0 | 43.0 | 32250 | 1.0147 | 0.8983 |
| 0.0 | 44.0 | 33000 | 0.9709 | 0.8983 |
| 0.0 | 45.0 | 33750 | 0.9643 | 0.9067 |
| 0.0 | 46.0 | 34500 | 0.9770 | 0.9017 |
| 0.0 | 47.0 | 35250 | 1.0000 | 0.8983 |
| 0.0 | 48.0 | 36000 | 1.0223 | 0.9017 |
| 0.0 | 49.0 | 36750 | 1.0291 | 0.9017 |
| 0.0 | 50.0 | 37500 | 1.0324 | 0.9017 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|