--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_beit_large_adamax_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9183333333333333 --- # smids_10x_beit_large_adamax_00001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8705 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.151 | 1.0 | 750 | 0.2341 | 0.9117 | | 0.085 | 2.0 | 1500 | 0.2729 | 0.9117 | | 0.0389 | 3.0 | 2250 | 0.3555 | 0.9183 | | 0.0354 | 4.0 | 3000 | 0.4728 | 0.92 | | 0.0161 | 5.0 | 3750 | 0.5494 | 0.9117 | | 0.0006 | 6.0 | 4500 | 0.5920 | 0.9167 | | 0.0191 | 7.0 | 5250 | 0.7177 | 0.9083 | | 0.0025 | 8.0 | 6000 | 0.7193 | 0.9183 | | 0.0296 | 9.0 | 6750 | 0.7219 | 0.9183 | | 0.0071 | 10.0 | 7500 | 0.7346 | 0.9067 | | 0.0001 | 11.0 | 8250 | 0.8516 | 0.9133 | | 0.0012 | 12.0 | 9000 | 0.7790 | 0.9217 | | 0.0009 | 13.0 | 9750 | 0.7769 | 0.9117 | | 0.0 | 14.0 | 10500 | 0.8050 | 0.92 | | 0.0 | 15.0 | 11250 | 0.7869 | 0.9167 | | 0.0001 | 16.0 | 12000 | 0.8102 | 0.9133 | | 0.0588 | 17.0 | 12750 | 0.7913 | 0.9183 | | 0.0 | 18.0 | 13500 | 0.9080 | 0.9117 | | 0.0 | 19.0 | 14250 | 0.7883 | 0.915 | | 0.0 | 20.0 | 15000 | 0.8588 | 0.9183 | | 0.0001 | 21.0 | 15750 | 0.8772 | 0.9167 | | 0.0001 | 22.0 | 16500 | 0.8747 | 0.9133 | | 0.0001 | 23.0 | 17250 | 0.7911 | 0.9217 | | 0.0 | 24.0 | 18000 | 0.7828 | 0.9217 | | 0.0 | 25.0 | 18750 | 0.7802 | 0.9233 | | 0.0 | 26.0 | 19500 | 0.8237 | 0.92 | | 0.0 | 27.0 | 20250 | 0.8003 | 0.9217 | | 0.0 | 28.0 | 21000 | 0.8936 | 0.9133 | | 0.0009 | 29.0 | 21750 | 0.8831 | 0.915 | | 0.0181 | 30.0 | 22500 | 0.8036 | 0.9217 | | 0.0 | 31.0 | 23250 | 0.7557 | 0.9267 | | 0.0 | 32.0 | 24000 | 0.8859 | 0.92 | | 0.0 | 33.0 | 24750 | 0.8754 | 0.92 | | 0.0001 | 34.0 | 25500 | 0.8554 | 0.9117 | | 0.0 | 35.0 | 26250 | 0.8615 | 0.9167 | | 0.0 | 36.0 | 27000 | 0.8299 | 0.9217 | | 0.0035 | 37.0 | 27750 | 0.8816 | 0.9167 | | 0.0 | 38.0 | 28500 | 0.8681 | 0.9233 | | 0.0 | 39.0 | 29250 | 0.8281 | 0.92 | | 0.0 | 40.0 | 30000 | 0.8247 | 0.9183 | | 0.0008 | 41.0 | 30750 | 0.8595 | 0.9183 | | 0.0 | 42.0 | 31500 | 0.8563 | 0.92 | | 0.0038 | 43.0 | 32250 | 0.8322 | 0.925 | | 0.0 | 44.0 | 33000 | 0.8334 | 0.9183 | | 0.0 | 45.0 | 33750 | 0.8475 | 0.9183 | | 0.0 | 46.0 | 34500 | 0.8657 | 0.92 | | 0.0 | 47.0 | 35250 | 0.8614 | 0.9183 | | 0.0 | 48.0 | 36000 | 0.8662 | 0.92 | | 0.0 | 49.0 | 36750 | 0.8708 | 0.9183 | | 0.0 | 50.0 | 37500 | 0.8705 | 0.9183 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2