--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_sgd_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5121951219512195 --- # hushem_40x_deit_tiny_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1237 - Accuracy: 0.5122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4318 | 1.0 | 220 | 1.6149 | 0.1707 | | 1.3729 | 2.0 | 440 | 1.5770 | 0.1951 | | 1.3561 | 3.0 | 660 | 1.5432 | 0.1707 | | 1.3096 | 4.0 | 880 | 1.5177 | 0.1463 | | 1.2756 | 5.0 | 1100 | 1.4946 | 0.1951 | | 1.2485 | 6.0 | 1320 | 1.4738 | 0.2195 | | 1.1719 | 7.0 | 1540 | 1.4569 | 0.2195 | | 1.1324 | 8.0 | 1760 | 1.4401 | 0.2439 | | 1.1522 | 9.0 | 1980 | 1.4251 | 0.2683 | | 1.1548 | 10.0 | 2200 | 1.4097 | 0.2439 | | 1.1099 | 11.0 | 2420 | 1.3960 | 0.2683 | | 1.0799 | 12.0 | 2640 | 1.3821 | 0.2683 | | 1.072 | 13.0 | 2860 | 1.3689 | 0.2927 | | 1.0381 | 14.0 | 3080 | 1.3552 | 0.3171 | | 1.0533 | 15.0 | 3300 | 1.3423 | 0.2927 | | 1.0294 | 16.0 | 3520 | 1.3293 | 0.3171 | | 1.004 | 17.0 | 3740 | 1.3169 | 0.3171 | | 1.0138 | 18.0 | 3960 | 1.3048 | 0.3171 | | 0.9902 | 19.0 | 4180 | 1.2935 | 0.3171 | | 0.9047 | 20.0 | 4400 | 1.2817 | 0.3171 | | 0.9213 | 21.0 | 4620 | 1.2707 | 0.3415 | | 0.9555 | 22.0 | 4840 | 1.2595 | 0.3415 | | 0.9607 | 23.0 | 5060 | 1.2491 | 0.3415 | | 0.9344 | 24.0 | 5280 | 1.2391 | 0.3415 | | 0.8688 | 25.0 | 5500 | 1.2295 | 0.3902 | | 0.9175 | 26.0 | 5720 | 1.2208 | 0.4146 | | 0.887 | 27.0 | 5940 | 1.2120 | 0.4390 | | 0.905 | 28.0 | 6160 | 1.2036 | 0.4634 | | 0.8477 | 29.0 | 6380 | 1.1957 | 0.4878 | | 0.8486 | 30.0 | 6600 | 1.1887 | 0.4878 | | 0.9203 | 31.0 | 6820 | 1.1822 | 0.4878 | | 0.8893 | 32.0 | 7040 | 1.1760 | 0.4878 | | 0.8469 | 33.0 | 7260 | 1.1702 | 0.4878 | | 0.7935 | 34.0 | 7480 | 1.1645 | 0.4878 | | 0.7904 | 35.0 | 7700 | 1.1593 | 0.4878 | | 0.7994 | 36.0 | 7920 | 1.1544 | 0.5122 | | 0.8205 | 37.0 | 8140 | 1.1499 | 0.5122 | | 0.8696 | 38.0 | 8360 | 1.1458 | 0.5122 | | 0.8262 | 39.0 | 8580 | 1.1421 | 0.5122 | | 0.7584 | 40.0 | 8800 | 1.1388 | 0.5122 | | 0.8457 | 41.0 | 9020 | 1.1358 | 0.5122 | | 0.8307 | 42.0 | 9240 | 1.1331 | 0.5122 | | 0.8183 | 43.0 | 9460 | 1.1307 | 0.5122 | | 0.7718 | 44.0 | 9680 | 1.1287 | 0.5122 | | 0.7855 | 45.0 | 9900 | 1.1271 | 0.5122 | | 0.7875 | 46.0 | 10120 | 1.1258 | 0.5122 | | 0.8109 | 47.0 | 10340 | 1.1248 | 0.5122 | | 0.7297 | 48.0 | 10560 | 1.1241 | 0.5122 | | 0.7352 | 49.0 | 10780 | 1.1238 | 0.5122 | | 0.7935 | 50.0 | 11000 | 1.1237 | 0.5122 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2