--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_small_sgd_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5111111111111111 --- # hushem_40x_deit_small_sgd_0001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 - Accuracy: 0.5111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7252 | 1.0 | 215 | 1.5329 | 0.2667 | | 1.5501 | 2.0 | 430 | 1.4609 | 0.3111 | | 1.4663 | 3.0 | 645 | 1.4250 | 0.3111 | | 1.4117 | 4.0 | 860 | 1.4032 | 0.2889 | | 1.3533 | 5.0 | 1075 | 1.3870 | 0.2667 | | 1.3221 | 6.0 | 1290 | 1.3733 | 0.2889 | | 1.3111 | 7.0 | 1505 | 1.3613 | 0.3111 | | 1.2698 | 8.0 | 1720 | 1.3509 | 0.3111 | | 1.2425 | 9.0 | 1935 | 1.3418 | 0.3111 | | 1.2243 | 10.0 | 2150 | 1.3338 | 0.3778 | | 1.2016 | 11.0 | 2365 | 1.3268 | 0.3778 | | 1.1128 | 12.0 | 2580 | 1.3203 | 0.3556 | | 1.174 | 13.0 | 2795 | 1.3136 | 0.3556 | | 1.1731 | 14.0 | 3010 | 1.3081 | 0.4 | | 1.141 | 15.0 | 3225 | 1.3031 | 0.4 | | 1.1163 | 16.0 | 3440 | 1.2979 | 0.4 | | 1.1128 | 17.0 | 3655 | 1.2946 | 0.4222 | | 1.0806 | 18.0 | 3870 | 1.2916 | 0.4222 | | 1.0332 | 19.0 | 4085 | 1.2893 | 0.3778 | | 1.0358 | 20.0 | 4300 | 1.2875 | 0.4 | | 1.0352 | 21.0 | 4515 | 1.2855 | 0.4 | | 1.0257 | 22.0 | 4730 | 1.2838 | 0.4 | | 1.0362 | 23.0 | 4945 | 1.2822 | 0.4 | | 1.0137 | 24.0 | 5160 | 1.2805 | 0.4 | | 1.0067 | 25.0 | 5375 | 1.2787 | 0.4222 | | 0.9834 | 26.0 | 5590 | 1.2771 | 0.4667 | | 0.9889 | 27.0 | 5805 | 1.2753 | 0.4667 | | 0.9291 | 28.0 | 6020 | 1.2744 | 0.4667 | | 0.9563 | 29.0 | 6235 | 1.2728 | 0.4667 | | 0.9949 | 30.0 | 6450 | 1.2710 | 0.4667 | | 0.9331 | 31.0 | 6665 | 1.2698 | 0.4667 | | 0.9189 | 32.0 | 6880 | 1.2683 | 0.4889 | | 0.8977 | 33.0 | 7095 | 1.2667 | 0.4889 | | 0.9506 | 34.0 | 7310 | 1.2657 | 0.4889 | | 0.9018 | 35.0 | 7525 | 1.2644 | 0.4889 | | 0.9085 | 36.0 | 7740 | 1.2632 | 0.4889 | | 0.9525 | 37.0 | 7955 | 1.2617 | 0.4889 | | 0.9147 | 38.0 | 8170 | 1.2608 | 0.4889 | | 0.8837 | 39.0 | 8385 | 1.2597 | 0.5111 | | 0.9228 | 40.0 | 8600 | 1.2588 | 0.5111 | | 0.8773 | 41.0 | 8815 | 1.2582 | 0.5111 | | 0.8964 | 42.0 | 9030 | 1.2574 | 0.5111 | | 0.8892 | 43.0 | 9245 | 1.2568 | 0.5111 | | 0.8986 | 44.0 | 9460 | 1.2562 | 0.5111 | | 0.9114 | 45.0 | 9675 | 1.2557 | 0.5111 | | 0.8745 | 46.0 | 9890 | 1.2553 | 0.5111 | | 0.9224 | 47.0 | 10105 | 1.2551 | 0.5111 | | 0.9229 | 48.0 | 10320 | 1.2549 | 0.5111 | | 0.9087 | 49.0 | 10535 | 1.2549 | 0.5111 | | 0.9371 | 50.0 | 10750 | 1.2548 | 0.5111 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2