File size: 4,879 Bytes
808ca4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_adamax_0001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9761904761904762
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_40x_deit_small_adamax_0001_fold4

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2200
- Accuracy: 0.9762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0294        | 1.0   | 219   | 0.5356          | 0.8571   |
| 0.0128        | 2.0   | 438   | 0.3893          | 0.9286   |
| 0.0002        | 3.0   | 657   | 0.2025          | 0.9762   |
| 0.0012        | 4.0   | 876   | 0.0996          | 0.9524   |
| 0.0042        | 5.0   | 1095  | 0.3099          | 0.8810   |
| 0.0           | 6.0   | 1314  | 0.3304          | 0.9524   |
| 0.0           | 7.0   | 1533  | 0.0291          | 0.9762   |
| 0.0           | 8.0   | 1752  | 0.3258          | 0.9524   |
| 0.0           | 9.0   | 1971  | 0.2200          | 0.9762   |
| 0.0           | 10.0  | 2190  | 0.2242          | 0.9762   |
| 0.0           | 11.0  | 2409  | 0.2270          | 0.9762   |
| 0.0           | 12.0  | 2628  | 0.2293          | 0.9762   |
| 0.0           | 13.0  | 2847  | 0.2306          | 0.9762   |
| 0.0           | 14.0  | 3066  | 0.2313          | 0.9762   |
| 0.0           | 15.0  | 3285  | 0.2317          | 0.9762   |
| 0.0           | 16.0  | 3504  | 0.2327          | 0.9762   |
| 0.0           | 17.0  | 3723  | 0.2330          | 0.9762   |
| 0.0           | 18.0  | 3942  | 0.2343          | 0.9762   |
| 0.0           | 19.0  | 4161  | 0.2344          | 0.9762   |
| 0.0           | 20.0  | 4380  | 0.2350          | 0.9762   |
| 0.0           | 21.0  | 4599  | 0.2360          | 0.9762   |
| 0.0           | 22.0  | 4818  | 0.2352          | 0.9762   |
| 0.0           | 23.0  | 5037  | 0.2356          | 0.9762   |
| 0.0           | 24.0  | 5256  | 0.2355          | 0.9762   |
| 0.0           | 25.0  | 5475  | 0.2362          | 0.9762   |
| 0.0           | 26.0  | 5694  | 0.2364          | 0.9762   |
| 0.0           | 27.0  | 5913  | 0.2365          | 0.9762   |
| 0.0           | 28.0  | 6132  | 0.2373          | 0.9762   |
| 0.0           | 29.0  | 6351  | 0.2369          | 0.9762   |
| 0.0           | 30.0  | 6570  | 0.2371          | 0.9762   |
| 0.0           | 31.0  | 6789  | 0.2360          | 0.9762   |
| 0.0           | 32.0  | 7008  | 0.2375          | 0.9762   |
| 0.0           | 33.0  | 7227  | 0.2373          | 0.9762   |
| 0.0           | 34.0  | 7446  | 0.2372          | 0.9762   |
| 0.0           | 35.0  | 7665  | 0.2377          | 0.9762   |
| 0.0           | 36.0  | 7884  | 0.2367          | 0.9762   |
| 0.0           | 37.0  | 8103  | 0.2369          | 0.9762   |
| 0.0           | 38.0  | 8322  | 0.2356          | 0.9762   |
| 0.0           | 39.0  | 8541  | 0.2350          | 0.9762   |
| 0.0           | 40.0  | 8760  | 0.2356          | 0.9762   |
| 0.0           | 41.0  | 8979  | 0.2346          | 0.9762   |
| 0.0           | 42.0  | 9198  | 0.2341          | 0.9762   |
| 0.0           | 43.0  | 9417  | 0.2328          | 0.9762   |
| 0.0           | 44.0  | 9636  | 0.2314          | 0.9762   |
| 0.0           | 45.0  | 9855  | 0.2283          | 0.9762   |
| 0.0           | 46.0  | 10074 | 0.2261          | 0.9762   |
| 0.0           | 47.0  | 10293 | 0.2239          | 0.9762   |
| 0.0           | 48.0  | 10512 | 0.2219          | 0.9762   |
| 0.0           | 49.0  | 10731 | 0.2199          | 0.9762   |
| 0.0           | 50.0  | 10950 | 0.2200          | 0.9762   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2